Markov Chain Monte Carlo inversion of temperature and salinity structure of an internal solitary wave packet from marine seismic data
文献类型:期刊论文
作者 | Tang, Qunshu; Hobbs, Richard; Zheng, Chan; Biescas, Berta; Caiado, Camila |
刊名 | JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
![]() |
出版日期 | 2016 |
卷号 | 121期号:6页码:3692-3709 |
通讯作者 | Tang, QS (reprint author), Chinese Acad Sci, South China Sea Inst Oceanol, Key Lab Marginal Sea Geol, Guangzhou, Guangdong, Peoples R China. ; Tang, QS (reprint author), Univ Durham, Dept Earth Sci, Durham, England. |
中文摘要 | Marine seismic reflection technique is used to observe the strong ocean dynamic process of nonlinear internal solitary waves (ISWs or solitons) in the near-surface water. Analysis of ISWs is problematical because of their transient nature and limitations of classical physical oceanography methods. This work explores a Markov Chain Monte Carlo (MCMC) approach to recover the temperature and salinity of ISW field using the seismic reflectivity data and in situ hydrographic data. The MCMC approach is designed to directly sample the posterior probability distributions of temperature and salinity which are the solutions of the system under investigation. The principle improvement is the capability of incorporating uncertainties in observations and prior models which then provide quantified uncertainties in the output model parameters. We tested the MCMC approach on two acoustic reflectivity data sets one synthesized from a CTD cast and the other derived from multichannel seismic reflections. This method finds the solutions faithfully within the significantly narrowed confidence intervals from the provided priors. Combined with a low frequency initial model interpreted from seismic horizons of ISWs, the MCMC method is used to compute the finescale temperature, salinity, acoustic velocity, and density of ISW field. The statistically derived results are equivalent to the conventional linearized inversion method. However, the former provides us the quantified uncertainties of the temperature and salinity along the whole section whilst the latter does not. These results are the first time ISWs have been mapped with sufficient detail for further analysis of their dynamic properties. |
学科主题 | Oceanography |
源URL | [http://ir.scsio.ac.cn/handle/344004/15448] ![]() |
专题 | 南海海洋研究所_中科院边缘海地质重点实验室 |
推荐引用方式 GB/T 7714 | Tang, Qunshu,Hobbs, Richard,Zheng, Chan,et al. Markov Chain Monte Carlo inversion of temperature and salinity structure of an internal solitary wave packet from marine seismic data[J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS,2016,121(6):3692-3709. |
APA | Tang, Qunshu,Hobbs, Richard,Zheng, Chan,Biescas, Berta,&Caiado, Camila.(2016).Markov Chain Monte Carlo inversion of temperature and salinity structure of an internal solitary wave packet from marine seismic data.JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS,121(6),3692-3709. |
MLA | Tang, Qunshu,et al."Markov Chain Monte Carlo inversion of temperature and salinity structure of an internal solitary wave packet from marine seismic data".JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS 121.6(2016):3692-3709. |
入库方式: OAI收割
来源:南海海洋研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。