中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Double Least Squares Pursuit for Sparse Decomposition

文献类型:期刊论文

作者Wanyi Li; Peng Wang; Hong Qiao
刊名Intelligent Information Processing VI
出版日期2012
期号no页码:357-363
关键词Sparse decomposition, Sparse representation, Sparse approximation algorithm,Double Least-Squares Pursuit.
通讯作者Wanyi Li
中文摘要
英文摘要Sparse decomposition has been widely used in numerous applications, such as image processing, pattern recognition, remote sens-ing and computational biology. Despite plenty of theoretical develop-ments have been proposed, developing, implementing and analyzing novel fast sparse approximation algorithm is still an open problem. In this paper, a new pursuit algorithm Double Least Squares Pursuit (DLSP) is proposed for sparse decomposition. In this algorithm, the support of the solution is obtained by sorting the coefficients which are calculated by the first Least-Squares, and then the non-zero values over this sup-port are detected by the second Least-Squares. The results of numerical experiment demonstrate the effectiveness of the proposed method, which is with less time complexity, more simple form, and gives close or even better performance compared to the classical Orthogonal Matching Pursuit (OMP) method.
源URL[http://ir.ia.ac.cn/handle/173211/12602]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_机器人应用与理论组
作者单位Institute of Automation, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Wanyi Li,Peng Wang,Hong Qiao. Double Least Squares Pursuit for Sparse Decomposition[J]. Intelligent Information Processing VI,2012(no):357-363.
APA Wanyi Li,Peng Wang,&Hong Qiao.(2012).Double Least Squares Pursuit for Sparse Decomposition.Intelligent Information Processing VI(no),357-363.
MLA Wanyi Li,et al."Double Least Squares Pursuit for Sparse Decomposition".Intelligent Information Processing VI .no(2012):357-363.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。