中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
滇池金线鲃微卫星引物开发与种群遗传多样性研究

文献类型:学位论文

作者程城
学位类别硕士
答辩日期2015-05
授予单位中国科学院研究生院
授予地点北京
导师杨君兴,陈小勇
关键词滇池金线鲃 微卫星 引物 遗传多样性 遗传管理
中文摘要滇池金线鲃(Sinocyclocheilus graham)在分类上,隶属于鲤形目(Cypriniformes)鲤科(Cyprinidae)金线鲃属(Sinocyclocheilus),为滇池流域特有鱼类。近年来由于过度捕捞、外来种入侵等原因,种群数量急剧下降。滇池金线鲃人工繁育和增殖放流的成功,使该种得到了很大程度的保护。为了更有效地保护该物种的遗传多样性,本研究开发了该物种的微卫星引物,并使用微卫星标记技术,首次对滇池金线鲃各种群的遗传多样性进行了有效评估,并提出了遗传多样性的保护策略。 目前滇池金线鲃及其近缘种的微卫星引物尚未开发,本研究基于滇池金线鲃的全基因组数据,通过搜索微卫星序列、设计引物、PCR扩增、基因分型等流程和方法,获得了29对微卫星多态性引物,并在对其特点描述的基础上,选择其中的7个微卫星位点进行后续遗传学分析。 在种群遗传多样性分析方面,收集了滇池金线鲃15个种群共计435尾个体的样品,通过PCR扩增、微卫星基因分型和群体遗传学分析软件进行数据处理等方法,取得了以下结果: 人工繁育牧羊河各个种群的遗传多样性参数为:平均实际杂合度(Observed Heterozygosity,Ho)0.615-0.893;平均期望杂合度(Expected Heterozygosity,He)0.707-0.917;平均多态信息含量(Polymorphism Information Content,PIC)0.654-0.872;说明各种群的遗传多样性比较丰富。其中,F2代2013年繁育的种群保持了最大的遗传多样性, 平均期望杂合度0.917, 平均多态信息含量0.872。 在滇池金线鲃所有种群中,总体的遗传多样性参数分别为:等位基因丰富度(Allelic richness,An) 3.968-4.863,平均实际杂合度0.671-0.832,平均期望杂合度0.792-0.901,平均多态信息含量0.730-0.872,表现出了较高的遗传多样性。其中野外晋宁旧寨龙潭种群的平均基因丰富度、平均实际杂合度、平均期望杂合度、平均多态信息含量四个遗传多样性参数值,分别为4.863、0.832、0.901、0.872,均高于其他种群,说明晋宁旧寨龙潭种群的遗传多样性最高。 滇池金线鲃人工繁育各个种群基本保持了野外相应种群的遗传多样性。大板桥承龙水苑人工繁育种群的等位基因丰富度、 平均实际杂合度、平均期望杂合度、平均多态信息含量均略低于大板桥承龙水苑野外种群(3.968<4.244,0.792<0.848, 0.730<0.766),而平均实际杂合度则略高于后者(0.765>0.709);而牧羊河人工繁育群体的等位基因丰富度则略低于野外牧羊河种群(4.228<4.369), 平均实际杂合度、平均期望杂合度、平均多态信息含量三个值均略高于野外牧羊河种群(0.729>0.687,0.837>0.829,0.821>0.804)。 各种群中偏离Hardy-Weinberg平衡的点部分原因是杂合体缺失或过剩。牧羊河野外种群、晋宁旧寨龙潭野外种群间不存在遗传分化,提示可以看做一个种群。各种群间的Fis值都为正,但都在0.2以下,说明各种群内存在轻微的近交现象。分子方差分析(AMOVA)显示人工繁殖种群与野外所有种群间的差异只能解释2.37%的总变异,各种群间的变异解释了8.84%的总变异,种群内个体间的变异解释了10.7%的总变异,个体间的变异解释了78.09%的总变异。 各种群间遗传多样性参数的分析显示,在对滇池金线鲃的遗传管理过程中,野外各种群看做一个进化显著单元(Evolutionarily Significant Units,ESU)进行保护,同时不同种群间可以实施不同的保护策略,如适当扩大种群大小、定期监测种群遗传多样性的变化等。
英文摘要Sinocyclocheilusis grahami is subordinate to Sinocyclocheilusis, (Cypriniformes, Cyprinidae) and endemic to Dianchi Watershed. In recently years, due to over fishing、the invasion of alien species and many other factors, Sinocyclocheilusis grahami has been on the edge of extinction. Thanks to the artificial breeding and releasefish program, this endangered species has been protected to a large extent. To protect the genetic diversity of this species more efficiently, the genetic diversity of the artificial breeding populations and the wild corresponding populations, and the wild populations were evaluated at first time, based on the label technique of microsatellite which was exploited in this paper, and some suggestions of the measurements of genetic conservation were present. The microsatellite premiers of Sinocyclocheilusis grahami and its sibling species having not been exploited at present, 29 pairs of polymorphic microsatellite premiers were isolated, based on the scaffold data of genome of this species, through searching the sequences of microsatellite, the design of premiers, polymerase chain reaction, genotyping and so on. 7 microsatellie loci were selected to further research on account of the characteristic of all the loci. In the study of genetic diversity of populations, the samples of 435 individuals from 15 populations were collected. After polymerase chain reaction, genotyping,the data processing by all kinds of relevant softwares,the results were as followings: High levels of genetic diversity were detected at 7 microsatellite loci of Sinocyclocheilus grahami in the 10 artificial breeding population from Muyang River , with Observed Heterozygosity(Ho)ranged from 0.615 to 0.893, Expected Heterozygosity(He)0.707 to 0.917, Polymorphism Information Content (PIC) 0.654 to 0.872 . Among those populations,the highest genetic diversity is the population of F2 which was bred in 2013, with He 0.917, PIC 0.872. High levels of genetic diversity were detected in all populations, with Allelic richness (An) ranged from 3.968 to 4.863, Ho from 0.671 to 0.832, He 0.792 to 0.901, PIC 0.730 to 0.872. Among those populations,the highest genetic diversity is the wild population of the Old Jinning Dragon Pond, with An 4.863,Ho 0.832,He 0901,PIC 0.872. The genetic diversity of the wild populations was mainly kept in the artificial breeding ones. The genetic diversity of artificial breeding population of Dragon Waterfront is a little lower than the wild: the An, Ho, He, PIC of the former population is 3.968, 0.765, 0.792, 0.730,and the latter is 4.228, 0.709, 0.848, 0.766 respectively. The genetic diversity of artificial breeding population of Muyang River is similar to the wild one, the An, Ho, He, PIC of the former population is 4.228, 0.729, 0.837, 0.821,and the latter is 4.369, 0.687, 0.829, 0.804 respectively. The heterozygote deficiency、heterozygote excess can explain the 7 loci of all the populations departure from Hardy-Weinberg equilibrium partially. The value of Fst (Fst=0.035)suggests that the wild population of Muyang Rive and Dragon Waterfront can be regarded as one population, as the result of no differentiation between them. According to the value of Fis (0
语种中文
源URL[http://159.226.149.26:8080/handle/152453/10094]  
专题昆明动物研究所_系统进化与生物地理学
昆明动物研究所_东南亚野生动物多样性
推荐引用方式
GB/T 7714
程城. 滇池金线鲃微卫星引物开发与种群遗传多样性研究[D]. 北京. 中国科学院研究生院. 2015.

入库方式: OAI收割

来源:昆明动物研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。