中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Exploiting sparseness in de novo genome assembly

文献类型:期刊论文

作者Ye CX[*]1,2,3; Ma ZS4; Cannon CH5,6; Pop M[*]3; Yu DW[*]2,7
刊名BMC BIOINFORMATICS
出版日期2012
卷号13期号:Suppl 6页码:S1
通讯作者cxy@umd.edu ; mpop@umiacs.umd.edu ; douglas.yu@uea.ac.uk
英文摘要Background: The very large memory requirements for the construction of assembly graphs for de novo genome assembly limit current algorithms to super-computing environments. 

Methods: In this paper, we demonstrate that constructing a sparse assembly graph which stores only a small fraction of the observed k-mers as nodes and the links between these nodes allows the de novo assembly of even moderately-sized genomes (similar to 500 M) on a typical laptop computer. 

Results: We implement this sparse graph concept in a proof-of-principle software package, SparseAssembler, utilizing a new sparse k-mer graph structure evolved from the de Bruijn graph. We test our SparseAssembler with both simulated and real data, achieving similar to 90% memory savings and retaining high assembly accuracy, without sacrificing speed in comparison to existing de novo assemblers.
收录类别SCI
资助信息This work was supported in part by Yunnan Province, China [20080A001], and the Chinese Academy of Sciences [0902281081, KSCX2-YW-Z-1027, Y002731079], and also by the US National Science Foundation grant IIS-0812111. This article has been published as part of BMC Bioinformatics Volume 13 Supplement 6, 2012: Proceedings of the Second Annual RECOMB Satellite Workshop on Massively Parallel Sequencing (RECOMB-seq 2012). The full contents of the supplement are available online at http://www. biomedcentral.com/bmcbioinformatics/supplements/13/S6.
语种英语
源URL[http://159.226.149.26:8080/handle/152453/10815]  
专题昆明动物研究所_动物生态学研究中心
昆明动物研究所_遗传资源与进化国家重点实验室
昆明动物研究所_计算生物与生物信息学
作者单位1.Ecology & Evolution of Plant-Animal Interaction Group, Xishuangbanna Tropical Botanic Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303 China
2.Ecology, Conservation, and Environment Center; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 China
3.Department of Computer Science and Center for Bioinformatics and Computational Biology, Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
4.Computational Biology and Medical Ecology Lab; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 China
5.Ecological Evolution Group, Xishuangbanna Tropical Botanic Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303 China
6.Department of Biological Sciences, Texas Tech University, Lubbock, TX 79410 USA.
7.School of Biological Sciences, University of East Anglia, Norwich, Norfolk NR47TJ UK
推荐引用方式
GB/T 7714
Ye CX[*],Ma ZS,Cannon CH,et al. Exploiting sparseness in de novo genome assembly[J]. BMC BIOINFORMATICS,2012,13(Suppl 6):S1.
APA Ye CX[*],Ma ZS,Cannon CH,Pop M[*],&Yu DW[*].(2012).Exploiting sparseness in de novo genome assembly.BMC BIOINFORMATICS,13(Suppl 6),S1.
MLA Ye CX[*],et al."Exploiting sparseness in de novo genome assembly".BMC BIOINFORMATICS 13.Suppl 6(2012):S1.

入库方式: OAI收割

来源:昆明动物研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。