中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
线粒体相关基因LRRK2、PINK1 与精神分裂症易感性研究

文献类型:学位论文

作者龚伟
学位类别硕士
答辩日期2012-10
授予单位中国科学技术大学
授予地点北京
导师姚永刚研究员
关键词精神分裂症 schizophrenia 线粒体 mitochondria LRRK2 LRRK2 PINK1 PINK1 遗传易感性 genetic susceptibility 相关性
学位专业遗传学
中文摘要

精神分裂症(schizophrenia)是一类常见的精神疾病,一般发病于青壮年时期,
大多病程迁延,反复发作。其主要表现为感知、思维、情感、意志行为等多方
面的障碍,以及精神活动与周围环境和内心体验的不协调。精神分裂症是目前
发病率最高的一种精神疾病,据世界卫生组织估计,全球精神分裂症的终生患
病率高达1%左右,只有少部分病人经过治疗可以保持痊愈。除了沉重的经济负
担,由于这一疾病的特殊性,来自他人和社会的误解还往往给患者本人及其家
人带来严重的心理负担。
虽然关于该病的研究已经开展了一个多世纪,但其确切的发病机制目前并
无定论。在不同的时期,研究者从解剖学、神经递质、神经发育和遗传学等各
种角度对精神分裂症进行过研究,并取得了一定的成果。关于精神分裂症的遗
传学研究开展较多,在过去的几十年间积累了许多数据。从细胞病理学的角度
来说,线粒体功能障碍和精神分裂症等疾病相关。线粒体是细胞各项生命活动
最主要的能量来源,一旦线粒体功能受损,细胞内的各项活动都会受到抑制,
特别是神经细胞又是高耗能的细胞,轴突和树突的延伸、神经信号的传递、神
经网络的连接都需要大量的ATP 才能进行。使用PET、fMRI 等成像技术均发
现精神分裂症病人脑内代谢活动的降低,涉及的脑区包括前额皮质、丘脑、颞
叶、基底神经节等。此外,病人死后脑解剖也观察到线粒体密度的降低及形状
的变化。这些证据都提示线粒体损伤在精神分裂症的发病中具有潜在的作用。
同时,线粒体功能异常在多种其他精神疾病和神经退行性疾病当中也普遍存在。
LRRK2 和PINK1 基因是被广泛报道的帕金森病易感基因,与线粒体行使正
常功能密切相关。已有研究表明,LRRK2 是一个在线粒体以及胞质均有分布的
多结构域蛋白,具有GTPase 和激酶活性,具有众多的底物。其与分裂蛋白DLP1
相互作用能够调节线粒体分裂和融合动态变化,导致其激酶活性上升的突变会
加剧线粒体的分裂及细胞毒性。PINK1 是一个定位于线粒体的丝氨酸/苏氨酸激
酶,能够通过招募E3 泛素连接酶parkin 来介导对损伤线粒体的自噬性清除。
在本研究中,我们推测LRRK2 和PINK1 基因变异影响精神分裂症的遗传易
感性。利用SNaPshot 基因分型平台,我们检测了LRRK2 和PINK1 基因的17
个单核苷酸多态性位点(SNP)在我国湖南精神分裂症病人(n=507)和正常对照人
群(n=480)间的频率分布情况。统计结果显示,LRRK2 基因内含子上的四个tagSNPs (rs732374 ,P=0.044 ,OR (95% CI) =0.824 [0.683-0.994] ; rs4473003 ,P=0.033,OR (95% CI) =1.230 [1.017-1.487];rs7298930,P=0.033,OR (95% CI)=1.214 [1.016-1.452];rs7307310,P=0.036,OR (95% CI) =0.815 [0.673-0.987])

与精神分裂症相关,基于这些位点所构建的单倍型中,单倍型GCAT (P=0.022,OR (95% CI) =1.225 [1.033-1.524]) 和ATCC (P=0.038 , OR (95% CI) =0.819[0.677-0.989])显示出疾病相关性。PINK1 上的rs10916832 位点和精神分裂症相关(P=0.032,OR (95% CI) =1.229 [1.018-1.483])。基于检测的PINK1 基因上的5个SNP 构建的6 个主要单倍型中,单倍型TGAAC (P=0.003,OR (95% CI) =0.689[0.540-0.879])和CGAGC (P=0.005,OR (95% CI) =2.037 [1.229-3.376])在病例和对照间的频率分布差异具有显著性。本研究结果提示线粒体相关的帕金森病易感基因LRRK2和PINK1 上存在多个SNP 位点以及其单倍型对精神分裂症易感,提示二者可能是精神疾病和神经
退行性疾病的重要易感基因。结合前人的研究结果,我们推测某些线粒体功能
相关基因(如LRRK2 和PINK1 等)突变可能通过引发线粒体能量代谢异常从而影
响大脑这一对能量代谢最为敏感的器官的功能,进而通过不同的下游机制诱发
精神疾病或神经退行性疾病。我们需要开展独立样本的验证实验和功能实验分
析来进一步证实本研究的结果。

英文摘要Schizophrenia is a common mental disorder which tends to occur in young adults.
The patients suffer a long course of disease and repeated attacks. Most of them show
multiple abnormalities of perception, thinking emotion and volitional behavior. Their
mentations are always not accordant with surroundings and their inner experience.
Schizophrenia has the highest morbidity among all mental disorders. According to the
reports of WHO, the lifetime prevalence of schizophrenia is 1.3 percent and only a
small number of patients can be cured. Because of its complex characteristics,
schizophrenia patients and their families not only need to pay a lot for medicine, but
also receive social discriminations.
The studies of schizophrenia have been carried on for more than a century, but
we still do not sufficiently understand the exact pathogenesis of schizophrenia.
Researchers have made some progresses in several aspects, such as anatomy,
neurotransmitters, neurodevelopment and genetics during different periods. There are
accumulating genetic association studies for this disorder and we have accumulated a
lot of data in the past several decades. Mitochondrial dysfunction has been proposed
as a cause of schizophrenia. Mitochondria are the main energy source of various
cellular processes which can be suppressed in the case of mitochondrial damage. In
particular, the neurons need plenty of ATP for the neurite outgrowth, nerve conduction
and neural network connection. Imaging studies using positron emission tomography
(PET) and functional magnetic resonance imaging (fMRI) revealed decreased cerebral
metabolic rates in the frontal cortex, thalamus, temporal and the basal ganglia of
patients with schizophrenia. In addition, reduced mitochondrial density and abnormal
morphology were found by microscopic analysis of patient brain tissues. These
findings suggest the potential role of mitochondrial damage in the onset of
schizophrenia. Meanwhile, impairments of mitochondria were reported in many other
psychosis and neurodegenerative diseases. All these results indicate the idea that
mitochondrial dysfunction may be widespread in brain diseases.
LRRK2 and PINK1 were widely reported as susceptible genes of Parkinson’s
disease. These two genes play active roles in mitochondria. LRRK2 is a large protein
with multiple domains and is located in cytoplasm and intracellular membranous
structures including mitochondria. LRRK2 has both GTPase and kinase activities which interact with a lot of substrates. It can regulate mitochondrial dynamics and
function through direct interaction with DLP1. Mutations that increase its kinase
activity can induce mitochondrial fragmentation and cytotoxicity. PINK1 is a
mitochondrial membrane integral protein with a Ser/Thr kinase domain. It can recruit
parkin to the mitochondrial outer membrane and mediate the clearance of impaired
mitochondria by autophagy.
In this study, we hypothesized that genetic variants of LRRK2 and PINK1 genes
confer genetic susceptibility to schizophrenia. We used the SNaPshot genotyping
platform to detect the frequency distribution of 17 SNPs in LRRK2 and PINK1 genes
in 507 schizophrenia patients and 480 normal controls from Hunan, China. Statistical
results show that four tag SNPs in the introns of the LRRK2 gene (rs732374, P=0.044,
OR (95% CI) =0.824 [0.683-0.994]; rs4473003, P=0.033, OR (95% CI) =1.230
[1.017-1.487]; rs7298930, P=0.033, OR (95% CI) =1.214 [1.016-1.452]; rs7307310,
P=0.036, OR (95% CI) =0.815 [0.673-0.987]) are associated with schizophrenia. Two
haplotypes GCAT (P=0.022, OR (95% CI) =1.225 [1.033-1.524]) and ATCC
(P=0.038, OR (95% CI) =0.819 [0.677-0.989]) have a statistically significant
difference between the case and control groups. The frequency distribution of
rs10916832 of the PINK1 gene is significantly higher in patients with schizophrenia
than that of controls (P=0.032, OR (95% CI) =1.229 [1.018-1.483]). A total of six
haplotypes are constructed based on five SNPs genotyped for the PINK1 gene.
Haplotypes TGAAC (P=0.003, OR (95% CI) =0.689 [0.540-0.879]) and CGAGC
(P=0.005, OR (95% CI) =2.037 [1.229-3.376]) display significant difference between
cases and controls.
Our results indicate that SNPs and haplotypes of the two mitochondrial genes,
LRRK2 and PINK1, are associated with schizophrenia. Genetic variants of the LRRK2
and PINK1 genes may confer both mental diseases and neurodegenerative diseases.
Combine with previous studies, we speculate that the LRRK2 and PINK1 genes may
induce mitochondrial energy metabolic dysfunction and impair the brain (which is the
most sensitive organ to energy metabolism), leading to mental diseases and
neurodegenerative diseases. Further validation study and function assay are essential
to confirm our results.
语种中文
公开日期2012-12-10
源URL[http://159.226.149.42:8088/handle/152453/7133]  
专题昆明动物研究所_重大疾病机理的遗传学
推荐引用方式
GB/T 7714
龚伟. 线粒体相关基因LRRK2、PINK1 与精神分裂症易感性研究[D]. 北京. 中国科学技术大学. 2012.

入库方式: OAI收割

来源:昆明动物研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。