Intronless and intron-containing type I IFN genes coexist in amphibian Xenopus tropicalis: Insights into the origin and evolution of type I IFNs in vertebrates
文献类型:期刊论文
作者 | Gan, Zhen1,2; Chen, Shan Nan1; Huang, Bei3; Hou, Jing1,2; Nie, Pin1 |
刊名 | DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY
![]() |
出版日期 | 2017-02-01 |
卷号 | 67页码:166-176 |
关键词 | Type I IFN Intronless type I IFN Intron-containing type I IFN Retroposition event Xenopus tropicalis |
ISSN号 | 0145-305X |
英文摘要 | Type I IFNs are considered to be the core IFN species in vertebrates because of their predominant antiviral effects. But, a puzzling question remains to be answered, as to how intronless type I IFN genes in amniotes might have evolved from intron-containing type I IFN genes in fish and amphibians. In this study, intronless and intron-containing type I IFNs were found in the amphibian model, Xenopus tropicalis, with a total of sixteen and five genes, respectively. The intronless IFNs can be divided into three subgroups, and the intron-containing ones into two subgroups, implying that a retroposition event might have occurred in amphibians, resulting in the generation of intronless type I IFN genes. Two models were tentatively proposed to explain the evolution of type I IFNs in vertebrates: in model A, fish should possess the most primitive multi-exon-containing type I IFNs, and intronless type I IFN genes in amphibians are the ancestor of modern intronless type I IFNs in amniotes; in model B, intronless type I IFN genes in X. tropicalis may just represent an independent bifurcation in this species or probably in amphibians, and intronless type I IFN genes in amniotes may have arisen from another retroposition event occurred in a transition period even when reptiles were diverged from amphibians. It is considered that the model B can reflect the current knowledge on the occurrence of intronless and intron-containing type I IFN genes in vertebrate lineages. This study thus contributes to a better understanding of the origin and evolution of type I IFNs in vertebrates, and of the occurrence of intronless I IFNs in higher vertebrates. (C) 2016 Elsevier Ltd. All rights reserved. |
WOS标题词 | Science & Technology ; Life Sciences & Biomedicine |
类目[WOS] | Immunology ; Zoology |
研究领域[WOS] | Immunology ; Zoology |
关键词[WOS] | HUMAN INTERFERON-BETA ; JAK ; IDENTIFICATION ; RECEPTORS ; INDUCTION ; INFECTION ; CYTOKINES ; EFFECTORS ; DISTINCT ; PATHWAY |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000390071200016 |
源URL | [http://ir.ihb.ac.cn/handle/342005/28768] ![]() |
专题 | 水生生物研究所_水生生物多样性与资源保护研究中心_期刊论文 |
作者单位 | 1.Chinese Acad Sci, State Key Lab Freshwater Ecol & Biotechnol, Inst Hydrobiol, Wuhan 430072, Hubei Province, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.Jimei Univ, Coll Fisheries, Xiamen 361021, Fujian Province, Peoples R China |
推荐引用方式 GB/T 7714 | Gan, Zhen,Chen, Shan Nan,Huang, Bei,et al. Intronless and intron-containing type I IFN genes coexist in amphibian Xenopus tropicalis: Insights into the origin and evolution of type I IFNs in vertebrates[J]. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY,2017,67:166-176. |
APA | Gan, Zhen,Chen, Shan Nan,Huang, Bei,Hou, Jing,&Nie, Pin.(2017).Intronless and intron-containing type I IFN genes coexist in amphibian Xenopus tropicalis: Insights into the origin and evolution of type I IFNs in vertebrates.DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY,67,166-176. |
MLA | Gan, Zhen,et al."Intronless and intron-containing type I IFN genes coexist in amphibian Xenopus tropicalis: Insights into the origin and evolution of type I IFNs in vertebrates".DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 67(2017):166-176. |
入库方式: OAI收割
来源:水生生物研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。