中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
视觉空间概率分布的启发式表征:k-means聚类方式

文献类型:会议论文

作者Sun Jingwei; Li Jian; Zhang Hang
出版日期2016
会议名称2016年第一届北京视觉科学会议
会议日期2016-07
会议地点北京
关键词distribution representation k-means clustering probabilistic calculation decision under risk
其他题名Humans represent visuo-spatial probability distribution as k-means clusters
英文摘要

PURPOSE: Many behavioral and neuroimaging studies have shown that human decisions are sensitive to the statistical moments (mean, variance, etc.) of reward distributions. However, little is known about how reward distributions—or, probability distributions in general—are represented in the human brain. When the possible values of a probability distribution is numerous (infinite for a continuous distribution), it would be unrealistic or at least cognitively costly to maintain the probability for each possible value. Here we explored potential heuristic representations of probability distributions and tested them on human subjects. In particular, we tested a recently developed hypothesis that human representations of probability distributions are mixtures of a small number of non-overlapping basis distributions.
METHODS: In two experiments, we constructed a variety of multimodal distributions of spatial positions. On each trial, 70 vertical lines—the horizontal coordinates of which were samples independently drawn from the distributions—were briefly presented, one at a time on the computer screen. Human subjects were asked to locate (on the axis where stimuli were presented) the mean and the mode of the samples. A total of 19 naive subjects participated and completed 144–162 trials each.
RESULTS: All subjects’ mean and mode responses were highly correlated with the true mean and mode of the samples. Interestingly, all subjects’ mean and mode responses had systematic deviations from the true means and modes. The deviation patterns could be well predicted by computational models that assume a division of samples into a small number of clusters following the k-means clustering algorithm. Only the centroid and the relative weight of each cluster were necessary for the further calculation of mean and mode responses.
CONCLUSIONS: Humans represent probability distribution as k-means clusters, and use the centroid and relative weight of each cluster to calculate concerned statistics of the distribution.

收录类别其他
会议主办者中国科学院心理研究所
会议网址http://vision.csp.escience.cn/dct/page/1
学科主题感知觉心理学
语种英语
源URL[http://ir.psych.ac.cn/handle/311026/20825]  
专题心理研究所_心理所主办学术会议_2016年第一届北京视觉科学会议_会议摘要
作者单位1.School of Psychological and Cognitive Sciences, Peking University, 52 Haidian Road, Haidian District, Beijing, China, 100082
2.PKU-IDG/McGovern Institute for Brain Research, Peking University, 52 Haidian Road, Haidian District, Beijing, China, 100082
3.Peking-Tsinghua Center for Life Science, Peking University, 5 Yiheyuan Road, Haidian District, Beijing, China, 100871
推荐引用方式
GB/T 7714
Sun Jingwei,Li Jian,Zhang Hang. 视觉空间概率分布的启发式表征:k-means聚类方式[C]. 见:2016年第一届北京视觉科学会议. 北京. 2016-07.http://vision.csp.escience.cn/dct/page/1.

入库方式: OAI收割

来源:心理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。