中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Robust Object Tracking with Reacquisition Ability using Online Learned Detector

文献类型:期刊论文

作者Yang Tianyu; Li Baopu; Meng Max Q. -H.
刊名IEEE TRANSACTIONS ON CYBERNETICS
出版日期2014
英文摘要Long term tracking is a challenging task for many applications. In this paper, we propose a novel tracking approach that can adapt various appearance changes such as illumination, motion, and occlusions, and owns the ability of robust reacquisition after drifting. We utilize a condensation-based method with an online support vector machine as a reliable observation model to realize adaptive tracking. To redetect the target when drifting, a cascade detector based on random ferns is proposed. It can detect the target robustly in real time. After redetection, we also come up with a new refinement strategy to improve the tracker's performance by removing the support vectors corresponding to possible wrong updates by a matching template. Extensive comparison experiments on typical and challenging benchmark dataset illustrate a robust and encouraging performance of the proposed approach.
收录类别SCI
原文出处http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6740843
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/5401]  
专题深圳先进技术研究院_集成所
作者单位IEEE TRANSACTIONS ON CYBERNETICS
推荐引用方式
GB/T 7714
Yang Tianyu,Li Baopu,Meng Max Q. -H.. Robust Object Tracking with Reacquisition Ability using Online Learned Detector[J]. IEEE TRANSACTIONS ON CYBERNETICS,2014.
APA Yang Tianyu,Li Baopu,&Meng Max Q. -H..(2014).Robust Object Tracking with Reacquisition Ability using Online Learned Detector.IEEE TRANSACTIONS ON CYBERNETICS.
MLA Yang Tianyu,et al."Robust Object Tracking with Reacquisition Ability using Online Learned Detector".IEEE TRANSACTIONS ON CYBERNETICS (2014).

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。