中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Video Anomaly Detection based on a Hierarchical Activity Discovery within Spatio-Temporal Contexts

文献类型:期刊论文

作者Xu, Dan; Song, Rui; Wu, Xinyu; Li, Nannan; Feng, Wei; Qian, Huihuan
刊名NEUROCOMPUTING
出版日期2014
英文摘要In this paper, we present a novel approach for video-anomaly detection in crowded and complicated scenes. The proposed approach detects anomalies based on a hierarchical activity-pattern discovery framework, comprehensively considering both global and local spatio-temporal contexts. The discovery is a coarse-to-fine learning process with unsupervised methods for automatically constructing normal activity patterns at different levels. A unified anomaly energy function is designed based on these discovered activity patterns to identify the abnormal level of an input motion pattern. We demonstrate the effectiveness of the proposed method on the UCSD anomaly-detection datasets and compare the performance with existing work.
收录类别SCI
原文出处http://www.sciencedirect.com/science/article/pii/S092523121400753X
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/5443]  
专题深圳先进技术研究院_集成所
作者单位NEUROCOMPUTING
推荐引用方式
GB/T 7714
Xu, Dan,Song, Rui,Wu, Xinyu,et al. Video Anomaly Detection based on a Hierarchical Activity Discovery within Spatio-Temporal Contexts[J]. NEUROCOMPUTING,2014.
APA Xu, Dan,Song, Rui,Wu, Xinyu,Li, Nannan,Feng, Wei,&Qian, Huihuan.(2014).Video Anomaly Detection based on a Hierarchical Activity Discovery within Spatio-Temporal Contexts.NEUROCOMPUTING.
MLA Xu, Dan,et al."Video Anomaly Detection based on a Hierarchical Activity Discovery within Spatio-Temporal Contexts".NEUROCOMPUTING (2014).

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。