Hierarchical facial landmark localization via cascaded random binary patterns
文献类型:期刊论文
作者 | Zhanpeng Zhang; Wei Zhang; Huijun Ding; Jianzhuang Liu; Xiaoou Tang |
刊名 | Pattern Recognition
![]() |
出版日期 | 2015 |
英文摘要 | The main challenge of facial landmark localization in real-world application is that the large changes of head pose and facial expressions cause substantial image appearance variations. To avoid high dimensional facial shape regression, we propose a hierarchical pose regression approach, estimating the head rotation, face components, and facial landmarks hierarchically. The regression process works in a unified cascaded fern framework with binary patterns. We present generalized gradient boosted ferns (GBFs) for the regression framework, which give better performance than ferns. The framework also achieves real time performance. We verify our method on the latest benchmark datasets and show that it achieves the state-of-the-art performance. |
收录类别 | SCI |
原文出处 | http://www.sciencedirect.com/science/article/pii/S0031320314003495# |
语种 | 英语 |
源URL | [http://ir.siat.ac.cn:8080/handle/172644/6558] ![]() |
专题 | 深圳先进技术研究院_集成所 |
作者单位 | Pattern Recognition |
推荐引用方式 GB/T 7714 | Zhanpeng Zhang,Wei Zhang,Huijun Ding,et al. Hierarchical facial landmark localization via cascaded random binary patterns[J]. Pattern Recognition,2015. |
APA | Zhanpeng Zhang,Wei Zhang,Huijun Ding,Jianzhuang Liu,&Xiaoou Tang.(2015).Hierarchical facial landmark localization via cascaded random binary patterns.Pattern Recognition. |
MLA | Zhanpeng Zhang,et al."Hierarchical facial landmark localization via cascaded random binary patterns".Pattern Recognition (2015). |
入库方式: OAI收割
来源:深圳先进技术研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。