中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Cauchy estimator discriminant analysis for face recognition

文献类型:期刊论文

作者Yang, Xipeng; Cheng, Jun; Feng, Wei; Liang, Hong; Bai, Zhengyao; Tao, Dapeng
刊名NEUROCOMPUTING
出版日期2016
英文摘要With the rapid development of computer vision and pattern recognition, face recognition, one of the basic research topics in computer vision and pattern recognition, has received intensive attention in recent years. Usually, traditional face recognition algorithms have considerable discriminant ability; however, when there are some samples that are easy to confuse in the face database, the discriminant ability of traditional facerecognition algorithms will inevitably decrease. In this paper, based on the patch alignment framework (PAF) and Cauchy estimator theory, we proposed a novelty subspace learning algorithm for face recognitionnamed Cauchy estimator discriminant analysis (CEDA). Under the framework of PAF, both local and global geometries of the input samples are preserved; by using the Cauchy estimator, large errors caused by samples that are easy to confuse could be overcome. We conducted the experiments on three facedatabases and strongly illustrated the effectiveness of CEDA for face recognition.
收录类别SCI
原文出处http://www.sciencedirect.com/science/article/pii/S0925231216300467
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/9913]  
专题深圳先进技术研究院_集成所
作者单位NEUROCOMPUTING
推荐引用方式
GB/T 7714
Yang, Xipeng,Cheng, Jun,Feng, Wei,et al. Cauchy estimator discriminant analysis for face recognition[J]. NEUROCOMPUTING,2016.
APA Yang, Xipeng,Cheng, Jun,Feng, Wei,Liang, Hong,Bai, Zhengyao,&Tao, Dapeng.(2016).Cauchy estimator discriminant analysis for face recognition.NEUROCOMPUTING.
MLA Yang, Xipeng,et al."Cauchy estimator discriminant analysis for face recognition".NEUROCOMPUTING (2016).

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。