中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Human Action Recognition Using Local Spatio-Temporal Discriminant Embedding

文献类型:会议论文

作者Kui Jia ; Dit-Yan Yeung
出版日期2008
会议名称26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2008
英文摘要Human action video sequences can be considered as nonlinear dynamic shape manifolds in the space of image frames. In this paper, we address learning and classifying human actions on embedded low-dimensional manifolds. We propose a novel manifold embedding method, called Local Spatio-Temporal Discriminant Embedding (LSTDE). The discriminating capabilities of the proposed method are two-fold: (1) for localspatial discrimination, LSTDE projects data points (silhouette-based image frames of human action sequences) in a local neighborhood into theembedding space where data points of the same action class are close while those of different classes are far apart; (2) in such a localneighborhood, each data point has an associated short video segment, which forms a local temporal subspace on the embedded manifold. LSTDE finds an optimal embedding which maximizes the principal angles between those temporal subspaces associated with data points of different classes. Benefiting from the joint spatio-temporal discriminant embedding, our method is potentially more powerful for classifying humanactions with similar space-time shapes, and is able to perform recognition on a frame-by-frame or short video segment basis. Experimental results demonstrate that our method can accurately recognize human actions, and can improve the recognition performance over some representative manifold embedding methods, especially on highly confusing human action types
收录类别EI
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/2214]  
专题深圳先进技术研究院_集成所
推荐引用方式
GB/T 7714
Kui Jia,Dit-Yan Yeung. Human Action Recognition Using Local Spatio-Temporal Discriminant Embedding[C]. 见:26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2008.

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。