中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A Stochastic Perturbing Particle Swarm Optimization Model

文献类型:会议论文

作者Lei Zhang; Ke Xu; Ruiqing Fu; Yongsheng Ou; Xinyu Wu
出版日期2010
会议名称2010 2nd WRI Global Congress on Intelligent Systems, GCIS 2010
英文摘要The particle swarm optimization (PSO) algorithm is a generally used optimal algorithm, which exhibits good performance on optimization problems in complex search spaces. However, traditional PSO model suffers from a local minima, and lacks of effective mechanism to escape from it. This is harmful to its overall performance. This paper presents an improved PSO model called the stochastic perturbing PSO (SPPSO), which tries to overcome such premature convergence through perturbing the swarm with the perturbation and acceptance probability. The performance of the SPPSO is compared with the basic PSO (bPSO) on a set of benchmark functions. Experimental results show that, the new model not only effectively prevent the premature convergence, but also keep the rapid convergence rate like the bPSO.
收录类别EI
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/2890]  
专题深圳先进技术研究院_集成所
作者单位2010
推荐引用方式
GB/T 7714
Lei Zhang,Ke Xu,Ruiqing Fu,et al. A Stochastic Perturbing Particle Swarm Optimization Model[C]. 见:2010 2nd WRI Global Congress on Intelligent Systems, GCIS 2010.

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。