中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Nonparametric Density Estimation on A Graph: Learning Framework, Fast Approximation and Application in Image Segmentation

文献类型:会议论文

作者Zhiding Yu; Oscar C. Au; Ketan Tang; Chunjing Xu
出版日期2011
会议名称IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
会议地点Colorado Springs, CO
英文摘要We present a novel framework for tree-structure embedded density estimation and its fast approximation for mode seeking. The proposed method could find diverse applications in. computer vision and feature space analysis. Given any undirected, connected and weighted graph, the density function is defined as ajoint representation of the feature space and the distance domain on the graph's spanning tree. Since the distance domain of a tree is a constrained one, mode seeking can not be directly achieved by traditional mean shift in both domain, we address this problem by introducing node shifting with force competition and its fast approximation. Our work is closely related to the previous literature of nonparametric methods. One shall see, however; that the new formulation of this problem can lead to many advantages and new characteristics in its application, as will he illustrated later in this paper.
收录类别EI
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/3260]  
专题深圳先进技术研究院_集成所
作者单位2011
推荐引用方式
GB/T 7714
Zhiding Yu,Oscar C. Au,Ketan Tang,et al. Nonparametric Density Estimation on A Graph: Learning Framework, Fast Approximation and Application in Image Segmentation[C]. 见:IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Colorado Springs, CO.

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。