中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Compressed sensing ensemble classifier for human detection

文献类型:会议论文

作者Baochang Zhang; Juan Liu; Yongsheng Gao; Jianzhuang Liu
出版日期2013
会议名称4th International Conference on Intelligence Science and Big Data Engineering, IScIDE 2013
会议地点Beijing, China
英文摘要This paper proposes a novel Compressed Sensing Ensemble Classifier (CSEC) for human detection. The proposed CSEC employs the compressed sensing technique to get a more sparse model with a more reasonable selection of base classifiers. The major contributions of this paper are: 1) a novel principled framework for ensemble classifier design based on compressed sensing; 2) a new concept of considering both the simplicity of ensemble classifier and irrelevance of base classifiers towards optimal classifier design; and 3) a quadratic function for CSEC optimization which includes a new optimizable positive semi-definite relevance matrix to simultaneously select appropriate base classifiers with minimized relevance. Experimental results on INRIA and SDL databases show that the performance of CSEC is better than two most popular classifiers SVM and AdaBoost, as well as a most recent method CLML.
收录类别EI
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/4484]  
专题深圳先进技术研究院_集成所
作者单位2013
推荐引用方式
GB/T 7714
Baochang Zhang,Juan Liu,Yongsheng Gao,et al. Compressed sensing ensemble classifier for human detection[C]. 见:4th International Conference on Intelligence Science and Big Data Engineering, IScIDE 2013. Beijing, China.

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。