中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Multi-scale Joint Encoding of Local Binary Patterns for Texture and Material Classification

文献类型:会议论文

作者Xianbiao Qi; Yu Qiao; Chun-Guang Li; Jun Guo
出版日期2013
会议名称2013 24th British Machine Vision Conference, BMVC 2013
会议地点Bristol, United kingdom
英文摘要In the current multi-scale LBP (MS-LBP) on texture and material classification, each scale is encoded into histograms individually. This strategy ignores the correlation between different scales, and loses a lot of discriminative information. In this paper, we propose a novel and effective multi-scale joint encoding oflocal binary patterns (MSJ-LBP) for texture and material classification. In MSJ-LBP, the joint encoding strategy can capture the correlation between different scales and hence depict richer local structures. In addition, the proposed MSJ-LBP is computationally simple and rotation invariant. Extensive experiments on four challenging databases (Outex_TC_00012, Brodatz, KTH-TIPS, KTH-TIPS2a) show that the proposed MSJ-LBP significantly outperforms the classical MS-LBP and achieves the state-of-the-art performance.
收录类别EI
语种中文
源URL[http://ir.siat.ac.cn:8080/handle/172644/4486]  
专题深圳先进技术研究院_集成所
作者单位2013
推荐引用方式
GB/T 7714
Xianbiao Qi,Yu Qiao,Chun-Guang Li,et al. Multi-scale Joint Encoding of Local Binary Patterns for Texture and Material Classification[C]. 见:2013 24th British Machine Vision Conference, BMVC 2013. Bristol, United kingdom.

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。