中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Condensation-based multi-person detection and tracking with HOG and LBP

文献类型:会议论文

作者Baopu Li; Can Yang; Qi Zhang; Guoqing Xu
出版日期2014
会议名称2014 IEEE International Conference on Information and Automation, ICIA 2014
会议地点Hailar, Hulunbuir, China
英文摘要Multi-person tracking and detection is widely used in human robot interaction, which has been a hot topic in computer vision. In this paper, we utilize a tracking-by-detection framework to track many persons at the same time. We use HOG and LBP features to describe person's characteristics in a scene and train a strong classifier using Adaboost algorithm. In the tracking part, we use a particle filter to estimate the targets' position. Besides, we train an on-line SVM classifier to improve the accuracy of the tracking results by learning and updating the detector's results. The particles' velocity is also utilized to improve the accuracy of the data association, which relates the detector's output to the tracker's results. Our method is validated feasible on UBC-Hockey benchmark datasets.
收录类别EI
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/5575]  
专题深圳先进技术研究院_集成所
作者单位2014
推荐引用方式
GB/T 7714
Baopu Li,Can Yang,Qi Zhang,et al. Condensation-based multi-person detection and tracking with HOG and LBP[C]. 见:2014 IEEE International Conference on Information and Automation, ICIA 2014. Hailar, Hulunbuir, China.

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。