中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Particle filter based multi-pedestrian tracking by HOG and HOF

文献类型:会议论文

作者Can Yang; Baopu Li; Guoqing Xu
出版日期2014
会议名称2014 4th IEEE International Conference on Information Science and Technology, ICIST 2014
会议地点Shenzhen, China
英文摘要Automatic pedestrian detection and tracking is an important issue in the field of computer vision and robot navigation. We propose a scheme to implement multi-pedestrian tracking in a scene obtained by a static camera. We combine HOG and HOFfeatures to describe the characteristics of persons. AdaBoost algorithm is then utilized to train a strong classifier for better detection accuracy of persons. We use particle filter as the tracking framework and train a online SVM classifier, which is the observation model, by reliable samples from associated detections without occlusion. In consideration of the target's velocity into the weights calculation, the data association is more reliable. The preliminary experiments on some benchmark data demonstrate the feasibility of the proposed scheme.
收录类别EI
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/5577]  
专题深圳先进技术研究院_集成所
作者单位2014
推荐引用方式
GB/T 7714
Can Yang,Baopu Li,Guoqing Xu. Particle filter based multi-pedestrian tracking by HOG and HOF[C]. 见:2014 4th IEEE International Conference on Information Science and Technology, ICIST 2014. Shenzhen, China.

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。