中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Deep Representation Learning with Target Coding

文献类型:会议论文

作者Shuo Yang; Ping Luo; Chen Change Loy; Kenneth W. Shum; Xiaoou Tang
出版日期2015
会议名称Association for the Advancement of Artificial Intelligence(AAAI)
会议地点美国田纳西奥斯汀
英文摘要We consider the problem of learning deep representation when target labels are available. In this paper,we show that there exists intrinsic relationship between target coding and feature representation learning in deep networks. Specifically, we found that distributed binary code with error correcting capability is more capable of encouraging discriminative features, in comparison to the 1-of-K coding that is typically used in supervised deep learning. This new finding reveals additional benefit of using error-correcting code for deep model learning, apart from its well-known error correcting property. Extensive experiments are conducted on popular visual benchmark datasets.
收录类别EI
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/6693]  
专题深圳先进技术研究院_集成所
作者单位2015
推荐引用方式
GB/T 7714
Shuo Yang,Ping Luo,Chen Change Loy,et al. Deep Representation Learning with Target Coding[C]. 见:Association for the Advancement of Artificial Intelligence(AAAI). 美国田纳西奥斯汀.

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。