中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Deep Face Attributes Recognition Using Spatial Transformer Network

文献类型:会议论文

作者Tan Lianzhi; Li Zhifeng; Qiao Yu
出版日期2016
会议名称ICIA2016
会议地点荷兰阿姆斯特丹
英文摘要Face alignment is very crucial to the task of face attributes recognition. The performance of face attributes recognition would notably degrade if the fiducial points of the original face images are not precisely detected due to large lighting, pose and occlusion variations. In order to alleviate this problem, we propose a spatial transform based deep CNNs to improve the performance of face attributes recognition. In this approach, we first learn appropriate transformation parameters by a carefully designed spatial transformer network called LoNet to align the original face images, and then recognize the face attributes based on the aligned face images using a deep network called ClNet. To the best of our knowledge, this is the first attempt to use spatial transformer network in face attributes recognition task. Extensive experiments on two large and challenging databases (CelebA and LFWA) clearly demonstrate the effectiveness of the proposed approach over the current state-of-the-art.
收录类别EI
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/10012]  
专题深圳先进技术研究院_集成所
作者单位2016
推荐引用方式
GB/T 7714
Tan Lianzhi,Li Zhifeng,Qiao Yu. Deep Face Attributes Recognition Using Spatial Transformer Network[C]. 见:ICIA2016. 荷兰阿姆斯特丹.

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。