中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Deep Cascaded Bi-Network for Face Hallucination

文献类型:会议论文

作者Shizhan Zhu; Sifei Liu; Chen Change Loy; Xiaoou Tang
出版日期2016
会议名称ECCV2016
会议地点荷兰阿姆斯特丹
英文摘要We present a novel framework for hallucinating faces of un- constrained poses and with very low resolution (face size as small as 5pxIOD1). In contrast to existing studies that mostly ignore or assume pre-aligned face spatial con guration (e.g. facial landmarks localization or dense correspondence eld), we alternatingly optimize two comple- mentary tasks, namely face hallucination and dense correspondence eld estimation, in a uni ed framework. In addition, we propose a new gated deep bi-network that contains two functionality-specialized branches to recover di erent levels of texture details. Extensive experiments demon- strate that such formulation allows exceptional hallucination quality on in-the-wild low-res faces with signi cant pose and illumination variations.
收录类别EI
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/10025]  
专题深圳先进技术研究院_集成所
作者单位2016
推荐引用方式
GB/T 7714
Shizhan Zhu,Sifei Liu,Chen Change Loy,et al. Deep Cascaded Bi-Network for Face Hallucination[C]. 见:ECCV2016. 荷兰阿姆斯特丹.

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。