Deep Cascaded Bi-Network for Face Hallucination
文献类型:会议论文
作者 | Shizhan Zhu; Sifei Liu; Chen Change Loy; Xiaoou Tang |
出版日期 | 2016 |
会议名称 | ECCV2016 |
会议地点 | 荷兰阿姆斯特丹 |
英文摘要 | We present a novel framework for hallucinating faces of un- constrained poses and with very low resolution (face size as small as 5pxIOD1). In contrast to existing studies that mostly ignore or assume pre-aligned face spatial con guration (e.g. facial landmarks localization or dense correspondence eld), we alternatingly optimize two comple- mentary tasks, namely face hallucination and dense correspondence eld estimation, in a uni ed framework. In addition, we propose a new gated deep bi-network that contains two functionality-specialized branches to recover di erent levels of texture details. Extensive experiments demon- strate that such formulation allows exceptional hallucination quality on in-the-wild low-res faces with signi cant pose and illumination variations. |
收录类别 | EI |
语种 | 英语 |
源URL | [http://ir.siat.ac.cn:8080/handle/172644/10025] ![]() |
专题 | 深圳先进技术研究院_集成所 |
作者单位 | 2016 |
推荐引用方式 GB/T 7714 | Shizhan Zhu,Sifei Liu,Chen Change Loy,et al. Deep Cascaded Bi-Network for Face Hallucination[C]. 见:ECCV2016. 荷兰阿姆斯特丹. |
入库方式: OAI收割
来源:深圳先进技术研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。