中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Gender and Smile Classification using Deep Convolutional Neural Networks

文献类型:会议论文

作者Kaipeng Zhang; Lianzhi Tan; Zhifeng Li; Yu Qiao
出版日期2016
会议名称CVPR Workshop 2016
会议地点美国
英文摘要Facial gender and smile classification in unconstrained environment is challenging due to the invertible and large variations of face images. In this paper, we propose a deep model composed of GNet and SNet for these two tasks. We leverage the multi-task learning and the general-to-specific fine-tuning scheme to enhance the performance of our model. Our strategies exploit the inherent correlation between face identity, smile, gender and other face attributes to relieve the problem of over-fitting on small training set and improve the classification performance. We also propose the tasks-aware face cropping scheme to extract attribute- specific regions. The experimental results on the ChaLearn 16 FotW dataset for gender and smile classification demonstrate the effectiveness of our proposed methods.
收录类别EI
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/10028]  
专题深圳先进技术研究院_集成所
作者单位2016
推荐引用方式
GB/T 7714
Kaipeng Zhang,Lianzhi Tan,Zhifeng Li,et al. Gender and Smile Classification using Deep Convolutional Neural Networks[C]. 见:CVPR Workshop 2016. 美国.

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。