Gender and Smile Classification using Deep Convolutional Neural Networks
文献类型:会议论文
作者 | Kaipeng Zhang; Lianzhi Tan; Zhifeng Li; Yu Qiao |
出版日期 | 2016 |
会议名称 | CVPR Workshop 2016 |
会议地点 | 美国 |
英文摘要 | Facial gender and smile classification in unconstrained environment is challenging due to the invertible and large variations of face images. In this paper, we propose a deep model composed of GNet and SNet for these two tasks. We leverage the multi-task learning and the general-to-specific fine-tuning scheme to enhance the performance of our model. Our strategies exploit the inherent correlation between face identity, smile, gender and other face attributes to relieve the problem of over-fitting on small training set and improve the classification performance. We also propose the tasks-aware face cropping scheme to extract attribute- specific regions. The experimental results on the ChaLearn 16 FotW dataset for gender and smile classification demonstrate the effectiveness of our proposed methods. |
收录类别 | EI |
语种 | 英语 |
源URL | [http://ir.siat.ac.cn:8080/handle/172644/10028] ![]() |
专题 | 深圳先进技术研究院_集成所 |
作者单位 | 2016 |
推荐引用方式 GB/T 7714 | Kaipeng Zhang,Lianzhi Tan,Zhifeng Li,et al. Gender and Smile Classification using Deep Convolutional Neural Networks[C]. 见:CVPR Workshop 2016. 美国. |
入库方式: OAI收割
来源:深圳先进技术研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。