中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Clustering categorical data streams

文献类型:期刊论文

作者He zengyou; Xu xiaofei; Deng shengchun; Huang Joshua zhexue
刊名Advances in Intelligent Systems
出版日期2011
卷号11期号:4页码:185-192
英文摘要In this paper, we propose an efficient clustering algorithm for analyzing categorical data streams. It has been proved that the proposed algorithm uses small memory footprints. We provide empirical analysis on the performance of the algorithm in clustering both synthetic and real data streams. © 2011 IOS Press and the authors. All rights reserved.(10 refs)
收录类别EI
原文出处http://content.iospress.com/download/journal-of-computational-methods-in-sciences-and-engineering/jcm00363?id=journal-of-computational-methods-in-sciences-and-engineering%2Fjcm00363
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/3554]  
专题深圳先进技术研究院_数字所
作者单位Advances in Intelligent Systems
推荐引用方式
GB/T 7714
He zengyou,Xu xiaofei,Deng shengchun,et al. Clustering categorical data streams[J]. Advances in Intelligent Systems,2011,11(4):185-192.
APA He zengyou,Xu xiaofei,Deng shengchun,&Huang Joshua zhexue.(2011).Clustering categorical data streams.Advances in Intelligent Systems,11(4),185-192.
MLA He zengyou,et al."Clustering categorical data streams".Advances in Intelligent Systems 11.4(2011):185-192.

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。