Universal extension for Sobolev spaces of differential forms and applications
文献类型:期刊论文
作者 | Hiptmair, Ralf; Li, Jingzhi; Zou, Jun |
刊名 | Journal of Functional Analysis
![]() |
出版日期 | 2012 |
英文摘要 | This article is devoted to the construction of a family of universal extension operators for the Sobolev spaces H-k (d, Omega, Lambda(l)) of differential forms ofdegree l (0 <= l <= d) in a Lipschitz domain Omega subset of R-d (d is an element of N, d >= 2) for any k is an element of N-0. It generalizes the constructionof the first universal extension operator for standard Sobolev spaces H-k (Omega), k is an element of N-0, on Lipschitz domains, introduced by Stein [E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, NJ, 1970, Theorem 5, p. 181]. We adapt Stein's idea in the form of integral averaging over the pullback of a parametrized reflection mapping. The new theory covers extension operators for H-k (curl; Omega) and H-k (div; Omega) in R-3 as special cases for l = 1, 2, respectively. Of considerable mathematical interest in its own right, the new theoretical results have many important applications: we elaborate existence proofs for generalized regular decompositions. (c) 2012 Elsevier Inc. All rights reserved. |
收录类别 | SCI |
原文出处 | http://www.sciencedirect.com/science/article/pii/S0022123612001772 |
语种 | 英语 |
源URL | [http://ir.siat.ac.cn:8080/handle/172644/4161] ![]() |
专题 | 深圳先进技术研究院_数字所 |
作者单位 | Journal of Functional Analysis |
推荐引用方式 GB/T 7714 | Hiptmair, Ralf,Li, Jingzhi,Zou, Jun. Universal extension for Sobolev spaces of differential forms and applications[J]. Journal of Functional Analysis,2012. |
APA | Hiptmair, Ralf,Li, Jingzhi,&Zou, Jun.(2012).Universal extension for Sobolev spaces of differential forms and applications.Journal of Functional Analysis. |
MLA | Hiptmair, Ralf,et al."Universal extension for Sobolev spaces of differential forms and applications".Journal of Functional Analysis (2012). |
入库方式: OAI收割
来源:深圳先进技术研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。