中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Universal extension for Sobolev spaces of differential forms and applications

文献类型:期刊论文

作者Hiptmair, Ralf; Li, Jingzhi; Zou, Jun
刊名Journal of Functional Analysis
出版日期2012
英文摘要This article is devoted to the construction of a family of universal extension operators for the Sobolev spaces H-k (d, Omega, Lambda(l)) of differential forms ofdegree l (0 <= l <= d) in a Lipschitz domain Omega subset of R-d (d is an element of N, d >= 2) for any k is an element of N-0. It generalizes the constructionof the first universal extension operator for standard Sobolev spaces H-k (Omega), k is an element of N-0, on Lipschitz domains, introduced by Stein [E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, NJ, 1970, Theorem 5, p. 181]. We adapt Stein's idea in the form of integral averaging over the pullback of a parametrized reflection mapping. The new theory covers extension operators for H-k (curl; Omega) and H-k (div; Omega) in R-3 as special cases for l = 1, 2, respectively. Of considerable mathematical interest in its own right, the new theoretical results have many important applications: we elaborate existence proofs for generalized regular decompositions. (c) 2012 Elsevier Inc. All rights reserved.
收录类别SCI
原文出处http://www.sciencedirect.com/science/article/pii/S0022123612001772
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/4161]  
专题深圳先进技术研究院_数字所
作者单位Journal of Functional Analysis
推荐引用方式
GB/T 7714
Hiptmair, Ralf,Li, Jingzhi,Zou, Jun. Universal extension for Sobolev spaces of differential forms and applications[J]. Journal of Functional Analysis,2012.
APA Hiptmair, Ralf,Li, Jingzhi,&Zou, Jun.(2012).Universal extension for Sobolev spaces of differential forms and applications.Journal of Functional Analysis.
MLA Hiptmair, Ralf,et al."Universal extension for Sobolev spaces of differential forms and applications".Journal of Functional Analysis (2012).

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。