Convergence analysis of finite element methods for H(curl; Omega)-elliptic interface problems
文献类型:期刊论文
作者 | Hiptmair, Ralf; Li, Jingzhi; Zou, Jun |
刊名 | Numerische Mathematik
![]() |
出版日期 | 2012 |
英文摘要 | In this article we investigate the analysis of a finite element method for solving H(curl; Omega)-elliptic interface problems in general three-dimensional polyhedral domains with smooth interfaces. The continuous problems are discretized by means of the first family of lowest order N,d,lec H(curl; Omega)-conforming finite elements on a family of tetrahedral meshes which resolve the smooth interface in the sense of sufficient approximation in terms of a parameter delta that quantifies the mismatch between the smooth interface and the triangulation. Optimal error estimates in the H(curl; Omega)-norm are obtained for the first time. The analysis is based on a delta-strip argument, a new extension theorem for H (1)(curl; Omega)-functions across smooth interfaces, a novel non-standard interface-aware interpolation operator, and a perturbation argument for degrees of freedom for H(curl; Omega)-conforming finiteelements. Numerical tests are presented to verify the theoretical predictions and confirm the optimal order convergence of the numerical solution. |
收录类别 | SCI |
原文出处 | http://link.springer.com/article/10.1007/s00211-012-0468-6 |
语种 | 英语 |
源URL | [http://ir.siat.ac.cn:8080/handle/172644/4162] ![]() |
专题 | 深圳先进技术研究院_数字所 |
作者单位 | Numerische Mathematik |
推荐引用方式 GB/T 7714 | Hiptmair, Ralf,Li, Jingzhi,Zou, Jun. Convergence analysis of finite element methods for H(curl; Omega)-elliptic interface problems[J]. Numerische Mathematik,2012. |
APA | Hiptmair, Ralf,Li, Jingzhi,&Zou, Jun.(2012).Convergence analysis of finite element methods for H(curl; Omega)-elliptic interface problems.Numerische Mathematik. |
MLA | Hiptmair, Ralf,et al."Convergence analysis of finite element methods for H(curl; Omega)-elliptic interface problems".Numerische Mathematik (2012). |
入库方式: OAI收割
来源:深圳先进技术研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。