中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Hierarchical clustering algorithm for categorical data using a probabilistic rough set model

文献类型:期刊论文

作者Li Min; Deng Shaobo; Wang Lei; Feng Shengzhong; Fan Jianping
刊名KNOWLEDGE-BASED SYSTEMS
出版日期2014
英文摘要Several clustering analysis techniques for categorical data exist to divide similar objects into groups. Some are able to handle uncertainty in the clustering process, whereas others have stability issues. In this paper, we propose a new technique called TMDP (Total Mean Distribution Precision) for selecting the partitioning attribute based on probabilistic rough set theory. On the basis of this technique, with the concept of granularity, we derive a new clustering algorithm, MTMDP (Maximum Total Mean Distribution Precision), for categorical data. The MTMDP algorithm is a robust clustering algorithm that handles uncertainty in the process of clustering categorical data. We compare the MTMDP algorithm with the MMR (Min–Min–Roughness) algorithm which is the most relevant clustering algorithm, and also compared it with other unstable clustering algorithms, such as k-modes, fuzzy k-modes and fuzzy centroids. The experimental results indicate that the MTMDP algorithm can be successfully used to analyze grouped categorical data because it produces better clustering results.
收录类别SCI
原文出处http://www.sciencedirect.com/science/article/pii/S0950705114001300
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/5947]  
专题深圳先进技术研究院_数字所
作者单位KNOWLEDGE-BASED SYSTEMS
推荐引用方式
GB/T 7714
Li Min,Deng Shaobo,Wang Lei,et al. Hierarchical clustering algorithm for categorical data using a probabilistic rough set model[J]. KNOWLEDGE-BASED SYSTEMS,2014.
APA Li Min,Deng Shaobo,Wang Lei,Feng Shengzhong,&Fan Jianping.(2014).Hierarchical clustering algorithm for categorical data using a probabilistic rough set model.KNOWLEDGE-BASED SYSTEMS.
MLA Li Min,et al."Hierarchical clustering algorithm for categorical data using a probabilistic rough set model".KNOWLEDGE-BASED SYSTEMS (2014).

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。