On the convergence of Variational multiscale methods based on Newton’s iteration for the incompressible flows
文献类型:期刊论文
作者 | Shi, Feng; Zheng, Haibiao; Yu, Jiaping; Li, Ying |
刊名 | APPLIED MATHEMATICAL MODELLING
![]() |
出版日期 | 2014 |
英文摘要 | In this paper, the convergence of a general algorithm with theta-type stabilization form for the variational multiscale (VMS) method is presented. Meanwhile, explicit-type and implicit-type algorithms with linear convergence and quadratic convergence are derived from the theta-type algorithm, respectively. Thecombination of explicit-type and implicit-type algorithms are applied to adaptive VMS, which shows good efficiency. Finally, some numerical tests are shown to support the convergence analysis. (C) 2014 Elsevier Inc. All rights reserved. |
收录类别 | SCI |
原文出处 | http://www.sciencedirect.com/science/article/pii/S0307904X14002297 |
语种 | 英语 |
源URL | [http://ir.siat.ac.cn:8080/handle/172644/5973] ![]() |
专题 | 深圳先进技术研究院_数字所 |
作者单位 | APPLIED MATHEMATICAL MODELLING |
推荐引用方式 GB/T 7714 | Shi, Feng,Zheng, Haibiao,Yu, Jiaping,et al. On the convergence of Variational multiscale methods based on Newton’s iteration for the incompressible flows[J]. APPLIED MATHEMATICAL MODELLING,2014. |
APA | Shi, Feng,Zheng, Haibiao,Yu, Jiaping,&Li, Ying.(2014).On the convergence of Variational multiscale methods based on Newton’s iteration for the incompressible flows.APPLIED MATHEMATICAL MODELLING. |
MLA | Shi, Feng,et al."On the convergence of Variational multiscale methods based on Newton’s iteration for the incompressible flows".APPLIED MATHEMATICAL MODELLING (2014). |
入库方式: OAI收割
来源:深圳先进技术研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。