中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Data-driven contextual modeling for 3D scene understanding

文献类型:期刊论文

作者Yifei Shi; Pinxin Long; Kai Xu; Hui Huang; Yueshan Xiong
刊名Computers & Graphics
出版日期2016
英文摘要The recent development of fast depth map fusion technique enables the realtime, detailed scene reconstruction using commodity depth camera, making the indoor scene understanding more possible than ever. To address the specific challenges in object analysis at subscene level, this work proposes a data-driven approach to modeling contextual information covering both intra-object part relations and inter-object object layouts. Our method combines the detection of individual objects and object groups within the same framework, enabling contextual analysis without knowing the objects in the scene a priori. The key idea is that while contextual information could benefit the detection of either individual objects or object groups, both can contribute to object extraction when objects are unknown.
收录类别SCI
原文出处http://www.sciencedirect.com/science/article/pii/S0097849315002009
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/10167]  
专题深圳先进技术研究院_数字所
作者单位Computers & Graphics
推荐引用方式
GB/T 7714
Yifei Shi,Pinxin Long,Kai Xu,et al. Data-driven contextual modeling for 3D scene understanding[J]. Computers & Graphics,2016.
APA Yifei Shi,Pinxin Long,Kai Xu,Hui Huang,&Yueshan Xiong.(2016).Data-driven contextual modeling for 3D scene understanding.Computers & Graphics.
MLA Yifei Shi,et al."Data-driven contextual modeling for 3D scene understanding".Computers & Graphics (2016).

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。