中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A new markov model for clustering categorical sequences

文献类型:会议论文

作者Xiong tengke; Wang shengrui; Jiang qingshan; Huang Joshazhexue
出版日期2011
会议名称11th IEEE International Conference on Data Mining
会议地点 Sydney
英文摘要Clustering categorical sequences remains an open and challenging task due to the lack of an inherently meaningful measure of pairwise similarity betweensequences. Model initialization is an unsolved problem in model-based clustering algorithms for categorical sequences. In this paper, we propose a simple and effective Markov model to approximate the conditional probability distribution (CPD) model, and use it to design a novel two-tier Markov model to represent asequence cluster. Furthermore, we design a novel divisive hierarchical algorithm for clustering categorical sequences based on the two-tier Markov model. The experimental results on the data sets from three different domains demonstrate the promising performance of our models and clustering algorithm. © 2011 IEEE.(22 refs)
收录类别EI
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/3582]  
专题深圳先进技术研究院_数字所
作者单位2011
推荐引用方式
GB/T 7714
Xiong tengke,Wang shengrui,Jiang qingshan,et al. A new markov model for clustering categorical sequences[C]. 见:11th IEEE International Conference on Data Mining.  Sydney.

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。