中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Tight Approximation Bounds for Connectivity with a Color-Spanning Set

文献类型:会议论文

作者Fan, Chenglin; Luo, Jun; Zhu, Binhai
出版日期2013
会议名称24th International Symposium on Algorithms and Computation, ISAAC 2013
会议地点Hong Kong
英文摘要Given a set of points Q in the plane, define the r/2-Disk Graph, Q(r), as a generalized version of the Unit Disk Graph: the vertices of the graph is Q and there is an edge between two points in Q iff the distance between them is at most r. In this paper, motivated by applications in wireless sensor networks, we study the following geometric problem of color-spanning sets: given n points with m colors in the plane, choosing m points P with distinct colors such that the r/2-Disk Graph, P(r), is connected and r is minimized. When at most two points are of the same color c(i) (or, equivalently, when a color c(i) spans at most two points), we prove that the problem is NP-hard to approximate within a factor 3 - epsilon. And we present a tight factor-3 approximation for this problem. For the more general case when each color spans at most k points, we present a factor-(2k-1) approximation. Our solutions are based on the applications of the famous Hall's Marriage Theorem on bipartite graphs, which could be useful for other problems.
收录类别EI
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/5132]  
专题深圳先进技术研究院_数字所
作者单位2013
推荐引用方式
GB/T 7714
Fan, Chenglin,Luo, Jun,Zhu, Binhai. Tight Approximation Bounds for Connectivity with a Color-Spanning Set[C]. 见:24th International Symposium on Algorithms and Computation, ISAAC 2013. Hong Kong.

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。