中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A topic model for building fine-grained domain-specific emotion lexicon

文献类型:会议论文

作者Min Yang; Baolin Peng; Zheng Chen; Dingju Zhu; Kam-Pui Chow
出版日期2014
会议名称52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014
会议地点Baltimore, MD, United states
英文摘要Emotion lexicons play a crucial role in sentiment analysis and opinion mining. In this paper, we propose a novel Emotion-aware LDA (EaLDA) model to build a domainspecific lexicon for predefined emotions that include anger, disgust, fear, joy, sadness, surprise. The model uses a minimal set of domain-independent seed words as prior knowledge to discover a domainspecificlexicon, learning a fine-grained emotion lexicon much richer and adaptive to a specific domain. By comprehensive experiments, we show that our model can generate a high-quality fine-grained domain-specific emotion lexicon. 
收录类别EI
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/6066]  
专题深圳先进技术研究院_数字所
作者单位2014
推荐引用方式
GB/T 7714
Min Yang,Baolin Peng,Zheng Chen,et al. A topic model for building fine-grained domain-specific emotion lexicon[C]. 见:52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014. Baltimore, MD, United states.

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。