中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Learning Domain-specific Sentiment Lexicon with Supervised Sentiment-aware LDA

文献类型:会议论文

作者Yang, Min; Zhu, Dingju; Mustafa, Rashed; Chow, Kam-Pui
出版日期2014
会议名称21st European Conference on Artificial Intelligence, ECAI 2014
会议地点Czech Tech Univ, Prague, CZECH REPUBLIC
英文摘要Analyzing and understanding people's sentiments towards different topics has become an interesting task due to the explosion of opinion-rich resources. In most sentiment analysis applications, sentiment lexicons play a crucial role, to be used as metadata of sentiment polarity. However, most previous works focus on discovering general-purpose sentiment lexicons. They cannot capture domain-specific sentiment words, or implicit and connotative sentiment words that are seemingly objective. In this paper, we propose a supervised sentiment-aware LDA model (ssLDA). The model uses a minimal set of domain-independent seed words and document labels to discover a domain-specific lexicon, learning a lexicon much richer and adaptive to the sentiment of specificdocument. Experiments on two publicly-available datasets (movie reviews and Obama-McCain debate dataset) show that our model is effective in constructing a comprehensive and high-quality domain-specific sentiment lexicon. Furthermore, the resulting lexicon significantly improves the performance of sentimentclassification tasks.
收录类别EI
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/6068]  
专题深圳先进技术研究院_数字所
作者单位2014
推荐引用方式
GB/T 7714
Yang, Min,Zhu, Dingju,Mustafa, Rashed,et al. Learning Domain-specific Sentiment Lexicon with Supervised Sentiment-aware LDA[C]. 见:21st European Conference on Artificial Intelligence, ECAI 2014. Czech Tech Univ, Prague, CZECH REPUBLIC.

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。