中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Parameter Optimization of PID Controllers by Reinforcement Learning

文献类型:会议论文

作者Shang, X.Y.; Ji, T.Y.; Li, M.S.; Wu, P.Z.; Wu, Q.H.
出版日期2013
会议名称2013 5th Computer Science and Electronic Engineering Conference, CEEC 2013
会议地点Colchester, United kingdom
英文摘要This paper focuses on implementing a reinforcement learning algorithm for solving parameter optimization problems of Proportional Integral Derivative (PID) controllers. Function Optimization by Reinforcement Learning (FORL) remarkably outperforms a number of population-based intelligent algorithms when executed on benchmark functions in high-dimension circumstances. Therefore, this paper aims at examining the performance of FORL when optimizing parameters of PID controllers in a low-dimension space. According to the experiment studies in this paper, FORL is able to optimize the PID parameters with advantage over GA and PSO in terms of convergence speed.
收录类别EI
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/4921]  
专题深圳先进技术研究院_医工所
作者单位2013
推荐引用方式
GB/T 7714
Shang, X.Y.,Ji, T.Y.,Li, M.S.,et al. Parameter Optimization of PID Controllers by Reinforcement Learning[C]. 见:2013 5th Computer Science and Electronic Engineering Conference, CEEC 2013. Colchester, United kingdom.

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。