中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Gradient and SVM based Biometric Identification using Human Body Communication

文献类型:会议论文

作者Meng Xia; Jingjing Ma; Jingzhen Li; Yuhang Liu; Yicheng Zeng; Zedong Nie
出版日期2016
会议名称2016 IEEE International Conference of Online Analysis and Computing Science (ICOACS 2016)
会议地点中国重庆
英文摘要To investigate biometric identification based on human body communication at 300KHz-1.5GHz. A feasibility study was done with 10 volunteers including 6 men and 4 women. The age range of the volunteers is 23-27 years, weigh 45-75 kilogram, and stand 153-180 centimeter in, all volunteers are healthy. The measurement was done 9 times in 3 days, and a total 2,880,000 measurement data has been obtained. Matrix transform was employed to extract gradient from measurement data. The gradients as an individual trait were analyzed by support vector machines (SVM) including C-SVM and nu-SVM with linear function, polynomial, and radial basis function (RBF) as kernel function. Our experimental results show that, when the C-SVM with RBF as kernel function is used, the correct identification rate (CIR) of 99.5% is achieved, the area under the curve (AUC) of receiver operating characteristic (ROC) reaches 0.9999 and the equal error rate (EER) is 0.11%.
收录类别EI
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/10554]  
专题深圳先进技术研究院_医工所
作者单位2016
推荐引用方式
GB/T 7714
Meng Xia,Jingjing Ma,Jingzhen Li,et al. Gradient and SVM based Biometric Identification using Human Body Communication[C]. 见:2016 IEEE International Conference of Online Analysis and Computing Science (ICOACS 2016). 中国重庆.

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。