Biodegradable CaMgZn bulk metallic glass for potential skeletal application
文献类型:期刊论文
作者 | Y.B. Wang; X.H. Xie; H.F. Li; X.L. Wang; M.Z. Zhao; E.W. Zhang; Y.J. Bai; Y.F. Zheng; L. Qin |
刊名 | ACTA BIOMATERIALIA
![]() |
出版日期 | 2011 |
卷号 | 7期号:8页码:3195-3208 |
英文摘要 | A low density and high strength alloy, Ca65Mg15Zn20 bulk metallic glass (CaMgZn BMG), was evaluated by both in vitro tests on ion release and cytotoxicity and in vivo implantation, aimed at exploring the feasibility of this new biodegradable metallic material for potential skeletal applications. MTT assay results showed that the experimental CaMgZn BMG extracts had no detectable cytotoxic effects on L929, VSMC and ECV304 cells over a wide range of concentrations (0–50%), whereas for MG63 cells concentrations in the range ∼5–20% promoted cell viability. Meanwhile, alkaline phosphatase (ALP) activity results showed that CaMgZn BMG extracts increased alkaline phosphatase (ALP) production by MG63 cells. However, Annexin V–fluorescein isothiocyanate and propidium iodide staining indicated that higher concentrations (50%) might induce cell apoptosis. The fluorescence observation of F-actin and nuclei in MG63 cells showed that cells incubated with lower concentrations (0–50%) displayed no significant change in morphology compared with a negative control. Tumor necrosis factor-α expression by Raw264.7 cells in the presence of CaMgZn BMG extract was significantly lower than that of the positive and negative controls. Animal tests proved that there was no obvious inflammation reaction at the implantation site and CaMgZn BMG implants did not result in animal death. The cortical thickness around the CaMgZn BMG implant increased gradually from 1 to 4 weeks, as measured by in vivo micro-computer tomography. |
收录类别 | SCI |
原文出处 | http://www.sciencedirect.com/science/article/pii/S1742706111001929 |
语种 | 英语 |
源URL | [http://ir.siat.ac.cn:8080/handle/172644/3493] ![]() |
专题 | 深圳先进技术研究院_医工所 |
作者单位 | ACTA BIOMATERIALIA |
推荐引用方式 GB/T 7714 | Y.B. Wang,X.H. Xie,H.F. Li,et al. Biodegradable CaMgZn bulk metallic glass for potential skeletal application[J]. ACTA BIOMATERIALIA,2011,7(8):3195-3208. |
APA | Y.B. Wang.,X.H. Xie.,H.F. Li.,X.L. Wang.,M.Z. Zhao.,...&L. Qin.(2011).Biodegradable CaMgZn bulk metallic glass for potential skeletal application.ACTA BIOMATERIALIA,7(8),3195-3208. |
MLA | Y.B. Wang,et al."Biodegradable CaMgZn bulk metallic glass for potential skeletal application".ACTA BIOMATERIALIA 7.8(2011):3195-3208. |
入库方式: OAI收割
来源:深圳先进技术研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。