中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
热门
Robustness analysis of a hybrid of recursive neural dynamics for online matrix inversion

文献类型:期刊论文

作者Chen, Ke; Yi, Chenfu
刊名APPLIED MATHEMATICS AND COMPUTATION
出版日期2016
英文摘要Encouraged by superior convergence performance achieved by a recently proposed hybrid of recursive neural dynamics for online matrix inversion, we investigate its robustness properties in this paper when there exists large rnodel implementation errors. Theoretical analysis shows that the perturbed dynamic system is still global stable with the tight steady-state bound of solution error estimated. Moreover, this paper analyses global exponential convergence rate and finite convergence time of such a hybrid dynamical model to a relatively loose solution error bound. Computer simulation results substantiate our analysis on the perturbed hybrid neural dynamics for online matrix inversion when having large implementation errors. (C) 2015 Elsevier Inc. All rights reserved.
收录类别SCI
原文出处http://www.sciencedirect.com/science/article/pii/S0096300315013685
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/10390]  
专题深圳先进技术研究院_医工所
作者单位APPLIED MATHEMATICS AND COMPUTATION
推荐引用方式
GB/T 7714
Chen, Ke,Yi, Chenfu. Robustness analysis of a hybrid of recursive neural dynamics for online matrix inversion[J]. APPLIED MATHEMATICS AND COMPUTATION,2016.
APA Chen, Ke,&Yi, Chenfu.(2016).Robustness analysis of a hybrid of recursive neural dynamics for online matrix inversion.APPLIED MATHEMATICS AND COMPUTATION.
MLA Chen, Ke,et al."Robustness analysis of a hybrid of recursive neural dynamics for online matrix inversion".APPLIED MATHEMATICS AND COMPUTATION (2016).

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。