中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
F-k Domain Imaging for Synthetic Aperture Sequential Beamforming

文献类型:期刊论文

作者Vos, Hendrik J.; van Neer, Paul L. M. J.; Mota, Mariana Melo; Verweij, Martin D.; van der Steen, Antonius F. W.; Volker, Arno W. F.
刊名IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL
出版日期2016
英文摘要Spatial resolution in medical ultrasound images is a key component in image quality and an important factor for clinical diagnosis. In early systems, the lateral resolution was optimal in the focus but rapidly decreased outside the focal region. Improvements have been found in, e.g., dynamic-receivebeamforming, in which the entire image is focused in receive, but this requires complex processing of element data and is not applicable for mechanical scanning of single-element images. This paper exploits the concept of two-stage beamforming based on virtual source-receivers, which reduces the front-end computational load while maintaining a similar data rate and frame rate compared to dynamic-receive beamforming. We introduce frequency-wavenumber domain data processing to obtain fast second-stage data processing while having similarly high lateral resolution as dynamic-receivebeamforming and processing in time-space domain. The technique is very suitable in combination with emerging technologies such as application-specific integrated circuits (ASICs), hand-held devices, and wireless data transfer. The suggested method consists of three steps. In the first step, single-focused RF line data are shifted in time to relocate the focal point to a new origin t' = 0, z' = 0. This new origin is considered as an array of virtual source/receiver pairs, as has been suggested previously in literature. In the second step, the dataset is efficiently processed in the wavenumber-frequency domain to form an image that is in focus throughout its entire depth. In the third step, the data shift is undone to obtain a correct depth axis in the image. The method has been tested first with a single-element scanning system and second in a tissue-mimicking phantom using a linear array. In both setups, the method resulted in a -6-dB lateral point spread function (PSF) which was constant over the entire depth range, and similar to dynamic-receive beamforming and synthetic aperture sequential beamforming. The signal-to-noise ratio increased by 6 dB in both the near field and far field. These results show that the second-stage processing algorithm effectively produces a focused image over the entire depth range from a single-focused ultrasound field.
收录类别SCI
原文出处http://www.ncbi.nlm.nih.gov/pubmed/26571525
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/10448]  
专题深圳先进技术研究院_医工所
作者单位IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL
推荐引用方式
GB/T 7714
Vos, Hendrik J.,van Neer, Paul L. M. J.,Mota, Mariana Melo,et al. F-k Domain Imaging for Synthetic Aperture Sequential Beamforming[J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL,2016.
APA Vos, Hendrik J.,van Neer, Paul L. M. J.,Mota, Mariana Melo,Verweij, Martin D.,van der Steen, Antonius F. W.,&Volker, Arno W. F..(2016).F-k Domain Imaging for Synthetic Aperture Sequential Beamforming.IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL.
MLA Vos, Hendrik J.,et al."F-k Domain Imaging for Synthetic Aperture Sequential Beamforming".IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL (2016).

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。