中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A new manifold distance measure for visual object categorization

文献类型:会议论文

作者Fengfu Li; Xiayuan Huang; Hong Qiao; Bo Zhang
出版日期2016
会议名称arXiv
会议日期none
会议地点none
关键词none
通讯作者Fengfu Li
英文摘要Manifold distances are very effective tools for visual object recognition. However, most of the traditionalmanifold distances between images are based on the pixel-level comparison and thus easily affected by image rotations and translations. In this paper, we propose a new manifold distance to model the dissimilarities between visual objects based on the Complex Wavelet Structural Similarity (CW-SSIM) index. The proposed distance is more robust to rotations and translations of images than the traditionalmanifold distance and the CW-SSIM index based distance. In addition, the proposed distance is combined with the k-medoids clustering method to derive a new clustering method for visual objectcategorization. Experiments on Coil-20, Coil-100 and Olivetti Face Databases show that the proposeddistance measure is better for visual object categorization than both the traditional manifold distances and the CW-SSIM index based distances.
会议录arXiv
源URL[http://ir.ia.ac.cn/handle/173211/12834]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_机器人应用与理论组
自动化研究所_复杂系统管理与控制国家重点实验室
推荐引用方式
GB/T 7714
Fengfu Li,Xiayuan Huang,Hong Qiao,et al. A new manifold distance measure for visual object categorization[C]. 见:arXiv. none. none.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。