中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Spatial-Temporal Saliency Feature Extraction for Robust Mean-Shift Tracker

文献类型:会议论文

作者Suiwu Zheng; Linshan Liu; Hong Qiao
出版日期2014
会议名称Neural Information Processing. 21st International Conference, ICONIP 2014
会议日期3-6 Nov. 2014
会议地点Kuching, Malaysia
关键词NONE
通讯作者Suiwu Zheng
英文摘要Robust object tracking in crowded and cluttered dynamic scenes is a very difficult task in robotic vision due to complex and changeable environment and similar features between the background and foreground. In this paper, a saliency feature extraction method is fused into mean-shift tracker to overcome above difficulties. First, a spatial-temporal saliency feature extraction method is proposed to suppress the interference of the complex background. Furthermore, we proposed a saliency evaluation method by fusing the top-down visual mechanism to enhance the tracking performance. Finally, the efficiency of the saliency features based mean-shift tracker is validated through experimental results and analysis.
会议录Neural Information Processing. 21st International Conference, ICONIP 2014. Proceedings: LNCS 8834
源URL[http://ir.ia.ac.cn/handle/173211/12864]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_机器人应用与理论组
推荐引用方式
GB/T 7714
Suiwu Zheng,Linshan Liu,Hong Qiao. Spatial-Temporal Saliency Feature Extraction for Robust Mean-Shift Tracker[C]. 见:Neural Information Processing. 21st International Conference, ICONIP 2014. Kuching, Malaysia. 3-6 Nov. 2014.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。