Under-canopy turbulence and root water uptake of a Tibetan meadow ecosystem modeled by Noah-MP (SCI)
文献类型:期刊论文
作者 | Zheng D. H.; Van der Velde R.; Su Z. B.; Wen J.; Booij M. J.; Hoekstra A. Y.; Wang X. |
刊名 | Water Resources Research
![]() |
出版日期 | 2015 |
卷号 | 51期号:7页码:5735-5755 |
英文摘要 | The Noah-MP land surface model adopts a multiparameterization framework to accommodate various alternative parameterizations for more than 10 physical processes. In this paper, the parameterizations implemented in Noah-MP associated with under-canopy turbulence and root water uptake are enhanced with: (i) an under-canopy turbulence scheme currently adopted by the Community Land Model (CLM), (ii) two vertical root distribution functions, i.e., an exponential and an asymptotic formulation, and (iii) three soil water stress functions ((t)) controlling root water uptake, e.g., a soil water potential ()-based function, a nonlinear soil moisture ()-based power function and an empirical threshold approach considering preferential uptake from the moist part of the soil column. A comprehensive data set of in situ micrometeorological observations and profile soil moisture/temperature measurements collected from an alpine meadow site in the northeastern Tibetan Plateau is utilized to assess the impact of the augmentations on the Noah-MP performance. The results indicate that (i) implementation of the CLM under-canopy turbulence scheme greatly resolves the overestimation of sensible heat flux and underestimation of soil temperature across the profile, (ii) both exponential and asymptotic vertical root distribution functions better represent the Tibetan conditions enabling a better representation of the measured soil moisture dynamics, and (iii) the -based (t) functions overestimate surface soil moisture, the default linear -based (t) function underestimates latent heat flux during the dry-down, while both the nonlinear power function and empirical threshold approach simultaneously simulate well soil moisture, and latent and sensible heat fluxes. Additionally, the parameter uncertainty associated with soil water stress function and hydraulic parameterization is addressed. |
收录类别 | SCI |
语种 | 英语 |
源URL | [http://ir.casnw.net/handle/362004/27577] ![]() |
专题 | 寒区旱区环境与工程研究所_中科院寒区旱区环境与工程研究所(未分类)_期刊论文 |
推荐引用方式 GB/T 7714 | Zheng D. H.,Van der Velde R.,Su Z. B.,et al. Under-canopy turbulence and root water uptake of a Tibetan meadow ecosystem modeled by Noah-MP (SCI)[J]. Water Resources Research,2015,51(7):5735-5755. |
APA | Zheng D. H..,Van der Velde R..,Su Z. B..,Wen J..,Booij M. J..,...&Wang X..(2015).Under-canopy turbulence and root water uptake of a Tibetan meadow ecosystem modeled by Noah-MP (SCI).Water Resources Research,51(7),5735-5755. |
MLA | Zheng D. H.,et al."Under-canopy turbulence and root water uptake of a Tibetan meadow ecosystem modeled by Noah-MP (SCI)".Water Resources Research 51.7(2015):5735-5755. |
入库方式: OAI收割
来源:寒区旱区环境与工程研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。