中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Emotional textile image classification based on cross-domain convolutional sparse autoencoders with feature selection

文献类型:期刊论文

作者Li, Zuhe1,2; Fan, Yangyu1; Liu, Weihua3; Yu, Zeqi2; Wang, Fengqin2
刊名journal of electronic imaging
出版日期2017
卷号26期号:1
关键词textile image emotional image classification convolutional autoencoder domain adaptation feature selection
ISSN号1017-9909
产权排序3
通讯作者li, zuhe (zuheli@126.com)
英文摘要

we aim to apply sparse autoencoder-based unsupervised feature learning to emotional semantic analysis for textile images. to tackle the problem of limited training data, we present a cross-domain feature learning scheme for emotional textile image classification using convolutional autoencoders. we further propose a correlation-analysis-based feature selection method for the weights learned by sparse autoencoders to reduce the number of features extracted from large size images. first, we randomly collect image patches on an unlabeled image dataset in the source domain and learn local features with a sparse autoencoder. we then conduct feature selection according to the correlation between different weight vectors corresponding to the autoencoder's hidden units. we finally adopt a convolutional neural network including a pooling layer to obtain global feature activations of textile images in the target domain and send these global feature vectors into logistic regression models for emotional image classification. the cross-domain unsupervised feature learning method achieves 65% to 78% average accuracy in the cross-validation experiments corresponding to eight emotional categories and performs better than conventional methods. feature selection can reduce the computational cost of global feature extraction by about 50% while improving classification performance. (c) 2017 spie and is&t

WOS标题词science & technology ; technology ; physical sciences
类目[WOS]engineering, electrical & electronic ; optics ; imaging science & photographic technology
研究领域[WOS]engineering ; optics ; imaging science & photographic technology
关键词[WOS]empirical mode decomposition ; texture classification ; pattern
收录类别SCI ; EI
语种英语
WOS记录号WOS:000397059800052
源URL[http://ir.opt.ac.cn/handle/181661/28660]  
专题西安光学精密机械研究所_光学影像学习与分析中心
作者单位1.Northwestern Polytech Univ, Sch Elect & Informat, Xian, Peoples R China
2.Zhengzhou Univ Light Ind, Sch Comp & Commun Engn, Zhengzhou, Peoples R China
3.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian, Peoples R China
推荐引用方式
GB/T 7714
Li, Zuhe,Fan, Yangyu,Liu, Weihua,et al. Emotional textile image classification based on cross-domain convolutional sparse autoencoders with feature selection[J]. journal of electronic imaging,2017,26(1).
APA Li, Zuhe,Fan, Yangyu,Liu, Weihua,Yu, Zeqi,&Wang, Fengqin.(2017).Emotional textile image classification based on cross-domain convolutional sparse autoencoders with feature selection.journal of electronic imaging,26(1).
MLA Li, Zuhe,et al."Emotional textile image classification based on cross-domain convolutional sparse autoencoders with feature selection".journal of electronic imaging 26.1(2017).

入库方式: OAI收割

来源:西安光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。