Emotional textile image classification based on cross-domain convolutional sparse autoencoders with feature selection
文献类型:期刊论文
作者 | Li, Zuhe1,2; Fan, Yangyu1; Liu, Weihua3; Yu, Zeqi2; Wang, Fengqin2 |
刊名 | journal of electronic imaging
![]() |
出版日期 | 2017 |
卷号 | 26期号:1 |
关键词 | textile image emotional image classification convolutional autoencoder domain adaptation feature selection |
ISSN号 | 1017-9909 |
产权排序 | 3 |
通讯作者 | li, zuhe (zuheli@126.com) |
英文摘要 | we aim to apply sparse autoencoder-based unsupervised feature learning to emotional semantic analysis for textile images. to tackle the problem of limited training data, we present a cross-domain feature learning scheme for emotional textile image classification using convolutional autoencoders. we further propose a correlation-analysis-based feature selection method for the weights learned by sparse autoencoders to reduce the number of features extracted from large size images. first, we randomly collect image patches on an unlabeled image dataset in the source domain and learn local features with a sparse autoencoder. we then conduct feature selection according to the correlation between different weight vectors corresponding to the autoencoder's hidden units. we finally adopt a convolutional neural network including a pooling layer to obtain global feature activations of textile images in the target domain and send these global feature vectors into logistic regression models for emotional image classification. the cross-domain unsupervised feature learning method achieves 65% to 78% average accuracy in the cross-validation experiments corresponding to eight emotional categories and performs better than conventional methods. feature selection can reduce the computational cost of global feature extraction by about 50% while improving classification performance. (c) 2017 spie and is&t |
WOS标题词 | science & technology ; technology ; physical sciences |
类目[WOS] | engineering, electrical & electronic ; optics ; imaging science & photographic technology |
研究领域[WOS] | engineering ; optics ; imaging science & photographic technology |
关键词[WOS] | empirical mode decomposition ; texture classification ; pattern |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS记录号 | WOS:000397059800052 |
源URL | [http://ir.opt.ac.cn/handle/181661/28660] ![]() |
专题 | 西安光学精密机械研究所_光学影像学习与分析中心 |
作者单位 | 1.Northwestern Polytech Univ, Sch Elect & Informat, Xian, Peoples R China 2.Zhengzhou Univ Light Ind, Sch Comp & Commun Engn, Zhengzhou, Peoples R China 3.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Zuhe,Fan, Yangyu,Liu, Weihua,et al. Emotional textile image classification based on cross-domain convolutional sparse autoencoders with feature selection[J]. journal of electronic imaging,2017,26(1). |
APA | Li, Zuhe,Fan, Yangyu,Liu, Weihua,Yu, Zeqi,&Wang, Fengqin.(2017).Emotional textile image classification based on cross-domain convolutional sparse autoencoders with feature selection.journal of electronic imaging,26(1). |
MLA | Li, Zuhe,et al."Emotional textile image classification based on cross-domain convolutional sparse autoencoders with feature selection".journal of electronic imaging 26.1(2017). |
入库方式: OAI收割
来源:西安光学精密机械研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。