中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Spectral-spatial hyperspectral image classification using subspace-based support vector machines and adaptive Markov random fields

文献类型:期刊论文

作者Yu, Haoyang1; Gao, Lianru1; Li, Jun1; Li, Shan Shan1; Zhang, Bing1; Benediktsson, Jón Atli1
刊名Remote Sensing
出版日期2016
卷号8期号:4
关键词EAST CHINA SEA ABSORPTION-COEFFICIENTS OPTICAL CLASSIFICATION ATMOSPHERIC CORRECTION WATERS PHYTOPLANKTON REFLECTANCE VARIABILITY ALGORITHMS PRODUCTS
通讯作者Gao, Lianru (gaolr@radi.ac.cn)
英文摘要This paper introduces a new supervised classification method for hyperspectral images that combines spectral and spatial information. A support vector machine (SVM) classifier, integrated with a subspace projection method to address the problems of mixed pixels and noise, is first used to model the posterior distributions of the classes based on the spectral information. Then, the spatial information of the image pixels is modeled using an adaptive Markov random field (MRF) method. Finally, the maximum posterior probability classification is computed via the simulated annealing (SA) optimization algorithm. The combination of subspace-based SVMs and adaptive MRFs is the main contribution of this paper. The resulting methods, called SVMsub-eMRF and SVMsub-aMRF, were experimentally validated using two typical real hyperspectral data sets. The obtained results indicate that the proposed methods demonstrate superior performance compared with other classical hyperspectral image classification methods. © 2016 by the authors.
学科主题Remote Sensing
类目[WOS]Remote Sensing
收录类别SCI ; EI
语种英语
WOS记录号WOS:20162302478807
源URL[http://ir.radi.ac.cn/handle/183411/39241]  
专题遥感与数字地球研究所_SCI/EI期刊论文_期刊论文
作者单位1. Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing
2.100094, China
3. The School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing
4.100049, China
5. School of Geography and Planning, Sun Yat-sen University, Guangzhou
6.510275, China
7. Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik IS
8.107, Iceland
推荐引用方式
GB/T 7714
Yu, Haoyang,Gao, Lianru,Li, Jun,et al. Spectral-spatial hyperspectral image classification using subspace-based support vector machines and adaptive Markov random fields[J]. Remote Sensing,2016,8(4).
APA Yu, Haoyang,Gao, Lianru,Li, Jun,Li, Shan Shan,Zhang, Bing,&Benediktsson, Jón Atli.(2016).Spectral-spatial hyperspectral image classification using subspace-based support vector machines and adaptive Markov random fields.Remote Sensing,8(4).
MLA Yu, Haoyang,et al."Spectral-spatial hyperspectral image classification using subspace-based support vector machines and adaptive Markov random fields".Remote Sensing 8.4(2016).

入库方式: OAI收割

来源:遥感与数字地球研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。