中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Sparse representation-based correlation analysis of non-stationary spatiotemporal big data

文献类型:期刊论文

作者Song, Weijing1; Liu, Peng1; Wang, Lizhe1
刊名INTERNATIONAL JOURNAL OF DIGITAL EARTH
出版日期2016
卷号9期号:9页码:892-913
关键词C SAR DATA ARCHAEOLOGICAL PROSPECTION SPECKLE FILTERS LANDSCAPE XINJIANG MODELS CHINA GIS
通讯作者Wang, LZ (reprint author), Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing, Peoples R China. ; Wang, LZ (reprint author), China Univ Geosci, Sch Comp Sci, Wuhan, Peoples R China.
英文摘要As the basic data of digital city and smart city research, Spatiotemporal series data contain rich geographic information. Alongside the accumulation of spatial time-series data, we are also encountering new challenges related to analyzing and mining the correlations among the data. Because the traditional methods of analysis also have their own suitable condition restrictions for the new features, we propose a new analytical framework based on sparse representation to describe the time, space, and spatial-time correlation. First, before analyzing the correlation, we discuss sparse representation based on the K-singular value decomposition (K-SVD) algorithm to ensure that the sparse coefficients are in the same sparse domain. We then present new computing methods to calculate the time, spatial, and spatial-time correlation coefficients in the sparse domain; we then discuss the functions' properties. Finally, we discuss change regulations for the gross domestic product (GDP), population, and Normalized Difference Vegetation Index (NDVI) spatial time-series data in China's Jing-Jin-Ji region to confirm the effectiveness and adaptability of the new methods.
学科主题Physical Geography; Remote Sensing
类目[WOS]Geography, Physical ; Remote Sensing
收录类别SCI
语种英语
WOS记录号WOS:000382199700005
源URL[http://ir.radi.ac.cn/handle/183411/39260]  
专题遥感与数字地球研究所_SCI/EI期刊论文_期刊论文
作者单位1.Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing, Peoples R China
2.China Univ Geosci, Sch Comp Sci, Wuhan, Peoples R China
3.Univ Chinese Acad Sci, Sch Comp & Commun Engn, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Song, Weijing,Liu, Peng,Wang, Lizhe. Sparse representation-based correlation analysis of non-stationary spatiotemporal big data[J]. INTERNATIONAL JOURNAL OF DIGITAL EARTH,2016,9(9):892-913.
APA Song, Weijing,Liu, Peng,&Wang, Lizhe.(2016).Sparse representation-based correlation analysis of non-stationary spatiotemporal big data.INTERNATIONAL JOURNAL OF DIGITAL EARTH,9(9),892-913.
MLA Song, Weijing,et al."Sparse representation-based correlation analysis of non-stationary spatiotemporal big data".INTERNATIONAL JOURNAL OF DIGITAL EARTH 9.9(2016):892-913.

入库方式: OAI收割

来源:遥感与数字地球研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。