中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Geographical information system parallelization for spatial big data processing: a review

文献类型:期刊论文

作者Zhao, Lingjun1; Chen, Lajiao1; Ranjan, Rajiv1; Choo, Kim-Kwang Raymond1; He, Jijun1
刊名Cluster Computing
出版日期2016
卷号19期号:1页码:139-152
关键词BIOMASS BURNING EMISSIONS IVORY-COAST FIRE COUNTS CARBON MODIS SAVANNA CLIMATE VARIABILITY EURASIA FLUXES
通讯作者Chen, Lajiao (chenlj@radi.ac.cn)
英文摘要With the increasing interest in large-scale, high-resolution and real-time geographic information system (GIS) applications and spatial big data processing, traditional GIS is not efficient enough to handle the required loads due to limited computational capabilities.Various attempts have been made to adopt high performance computation techniques from different applications, such as designs of advanced architectures, strategies of data partition and direct parallelization method of spatial analysis algorithm, to address such challenges. This paper surveys the current state of parallel GIS with respect to parallel GIS architectures, parallel processing strategies, and relevant topics. We present the general evolution of the GIS architecture which includes main two parallel GIS architectures based on high performance computing cluster and Hadoop cluster. Then we summarize the current spatial data partition strategies, key methods to realize parallel GIS in the view of data decomposition and progress of the special parallel GIS algorithms. We use the parallel processing of GRASS as a case study. We also identify key problems and future potential research directions of parallel GIS. © 2015, Springer Science+Business Media New York.
学科主题Computer Science
类目[WOS]Computer Science, Information Systems ; Computer Science, Theory & Methods
收录类别SCI ; EI
语种英语
WOS记录号WOS:20154801633055
源URL[http://ir.radi.ac.cn/handle/183411/39338]  
专题遥感与数字地球研究所_SCI/EI期刊论文_期刊论文
作者单位1. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China
2. University of Chinese Academy of Sciences, Beijing, China
3. University of Newcastle, Newcastle upon Tyne, United Kingdom
4. University of South Australia, Adelaide, Australia
5. Capital Normal University, Beijing, China
推荐引用方式
GB/T 7714
Zhao, Lingjun,Chen, Lajiao,Ranjan, Rajiv,et al. Geographical information system parallelization for spatial big data processing: a review[J]. Cluster Computing,2016,19(1):139-152.
APA Zhao, Lingjun,Chen, Lajiao,Ranjan, Rajiv,Choo, Kim-Kwang Raymond,&He, Jijun.(2016).Geographical information system parallelization for spatial big data processing: a review.Cluster Computing,19(1),139-152.
MLA Zhao, Lingjun,et al."Geographical information system parallelization for spatial big data processing: a review".Cluster Computing 19.1(2016):139-152.

入库方式: OAI收割

来源:遥感与数字地球研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。