中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
SVM or deep learning? A comparative study on remote sensing image classification

文献类型:期刊论文

作者Liu, Peng; Choo, Kim-Kwang Raymond; Wang, Lizhe; Huang, Fang
出版日期2016
卷号0期号:0页码:1-13
英文摘要With constant advancements in remote sensing technologies resulting in higher image resolution, there is a corresponding need to be able to mine useful data and information from remote sensing images. In this paper, we study auto-encoder (SAE) and support vector machine (SVM), and to examine their sensitivity, we include additional umber of training samples using the active learning frame. We then conduct a comparative evaluation. When classifying remote sensing images, SVM can also perform better than SAE in some circumstances, and active learning schemes can be used to achieve high classification accuracy in both methods. © 2016 Springer-Verlag Berlin Heidelberg
收录类别EI
语种英语
WOS记录号WOS:20162902606843
源URL[http://ir.radi.ac.cn/handle/183411/39596]  
专题遥感与数字地球研究所_SCI/EI期刊论文_期刊论文
推荐引用方式
GB/T 7714
Liu, Peng,Choo, Kim-Kwang Raymond,Wang, Lizhe,et al. SVM or deep learning? A comparative study on remote sensing image classification[J],2016,0(0):1-13.
APA Liu, Peng,Choo, Kim-Kwang Raymond,Wang, Lizhe,&Huang, Fang.(2016).SVM or deep learning? A comparative study on remote sensing image classification.,0(0),1-13.
MLA Liu, Peng,et al."SVM or deep learning? A comparative study on remote sensing image classification".0.0(2016):1-13.

入库方式: OAI收割

来源:遥感与数字地球研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。