中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Feature extraction of typical vegetation based on rapid eye images

文献类型:期刊论文

作者Ma, Xingye1; Liu, Shaochuang1; Ma, Youqing1; Yanghuan1
刊名Revista Tecnica de la Facultad de Ingenieria Universidad del Zulia
出版日期2016
卷号39期号:3页码:380-387
英文摘要High-resolution images can provide more features about spatial, geometry and texture.Traditional pixel-based classification method only used the spectral information of images, without considering the space and texture information.Aiming at high-resolution remote sensing image RapidEye has abundant texture, structure and spatial features, this paper based on surface feature elements,combined with multi temporal and multi sensors, used object-oriented classification -support vector machine (SVM) to extract surface elements information.Using feature selection to extract single feature type such as vegetation types and finding out a group features that can make the overall effect ideal,analyzing the accuracy and influencing factors of various classes by accuracy evaluation.Results show that with 26 features of optimized added, the overall classification accuracy improved than the traditional classification methods, SVM classification precision can reach 91.9%,Kappa coefficient is 0.903 and the experimental result is ideal.
收录类别EI
语种英语
WOS记录号WOS:20162502506095
源URL[http://ir.radi.ac.cn/handle/183411/39600]  
专题遥感与数字地球研究所_SCI/EI期刊论文_期刊论文
作者单位1. School of Information, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, Beijing
2.100094, China
推荐引用方式
GB/T 7714
Ma, Xingye,Liu, Shaochuang,Ma, Youqing,et al. Feature extraction of typical vegetation based on rapid eye images[J]. Revista Tecnica de la Facultad de Ingenieria Universidad del Zulia,2016,39(3):380-387.
APA Ma, Xingye,Liu, Shaochuang,Ma, Youqing,&Yanghuan.(2016).Feature extraction of typical vegetation based on rapid eye images.Revista Tecnica de la Facultad de Ingenieria Universidad del Zulia,39(3),380-387.
MLA Ma, Xingye,et al."Feature extraction of typical vegetation based on rapid eye images".Revista Tecnica de la Facultad de Ingenieria Universidad del Zulia 39.3(2016):380-387.

入库方式: OAI收割

来源:遥感与数字地球研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。