Feature extraction of typical vegetation based on rapid eye images
文献类型:期刊论文
作者 | Ma, Xingye1; Liu, Shaochuang1; Ma, Youqing1; Yanghuan1 |
刊名 | Revista Tecnica de la Facultad de Ingenieria Universidad del Zulia
![]() |
出版日期 | 2016 |
卷号 | 39期号:3页码:380-387 |
英文摘要 | High-resolution images can provide more features about spatial, geometry and texture.Traditional pixel-based classification method only used the spectral information of images, without considering the space and texture information.Aiming at high-resolution remote sensing image RapidEye has abundant texture, structure and spatial features, this paper based on surface feature elements,combined with multi temporal and multi sensors, used object-oriented classification -support vector machine (SVM) to extract surface elements information.Using feature selection to extract single feature type such as vegetation types and finding out a group features that can make the overall effect ideal,analyzing the accuracy and influencing factors of various classes by accuracy evaluation.Results show that with 26 features of optimized added, the overall classification accuracy improved than the traditional classification methods, SVM classification precision can reach 91.9%,Kappa coefficient is 0.903 and the experimental result is ideal. |
收录类别 | EI |
语种 | 英语 |
WOS记录号 | WOS:20162502506095 |
源URL | [http://ir.radi.ac.cn/handle/183411/39600] ![]() |
专题 | 遥感与数字地球研究所_SCI/EI期刊论文_期刊论文 |
作者单位 | 1. School of Information, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, Beijing 2.100094, China |
推荐引用方式 GB/T 7714 | Ma, Xingye,Liu, Shaochuang,Ma, Youqing,et al. Feature extraction of typical vegetation based on rapid eye images[J]. Revista Tecnica de la Facultad de Ingenieria Universidad del Zulia,2016,39(3):380-387. |
APA | Ma, Xingye,Liu, Shaochuang,Ma, Youqing,&Yanghuan.(2016).Feature extraction of typical vegetation based on rapid eye images.Revista Tecnica de la Facultad de Ingenieria Universidad del Zulia,39(3),380-387. |
MLA | Ma, Xingye,et al."Feature extraction of typical vegetation based on rapid eye images".Revista Tecnica de la Facultad de Ingenieria Universidad del Zulia 39.3(2016):380-387. |
入库方式: OAI收割
来源:遥感与数字地球研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。