中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
G-IK-SVD: parallel IK-SVD on GPUs for sparse representation of spatial big data

文献类型:期刊论文

作者Song, Weijing; Deng, Ze; Wang, Lizhe; du, Bo; Liu, Peng; Lu, Ke
出版日期2016
卷号0期号:0页码:1-18
英文摘要Sparse representation is a building block for many image processing applications such as compression, denoising, fusion and so on. In the era of “Big data”, the current spare representation methods generally do not meet the demand of time-efficiently processing the large image dataset. Aiming at this problem, this paper employed the contemporary general-purpose computing on the graphics processing unit (GPGPU) to extend a sparse representation method for big image datasets, IK-SVD, namely G-IK-SVD. The GPU-aided IK-SVD parallelized IK-SVD with three GPU optimization methods: (1) a batch-OMP algorithm based on GPU-aided Cholesky decomposition algorithm, (2) a GPU sparse matrix operation optimization method and (3) a hybrid parallel scheme. The experimental results indicate that (1) the GPU-aided batch-OMP algorithm shows speedups of up to 30 times than the sparse coding part of IK-SVD, (2) the optimized sparse matrix operations improve the whole procedure of IK-SVD up to 15 times,(3) the proposed parallel scheme can further accelerate the procedure of sparsely representing one large image dataset up to 24 times, and (4) G-IK-SVD can gain the same quality of dictionary learning as IK-SVD. © 2016 Springer Science+Business Media New York
收录类别EI
语种英语
WOS记录号WOS:20160701954074
源URL[http://ir.radi.ac.cn/handle/183411/39608]  
专题遥感与数字地球研究所_SCI/EI期刊论文_期刊论文
推荐引用方式
GB/T 7714
Song, Weijing,Deng, Ze,Wang, Lizhe,et al. G-IK-SVD: parallel IK-SVD on GPUs for sparse representation of spatial big data[J],2016,0(0):1-18.
APA Song, Weijing,Deng, Ze,Wang, Lizhe,du, Bo,Liu, Peng,&Lu, Ke.(2016).G-IK-SVD: parallel IK-SVD on GPUs for sparse representation of spatial big data.,0(0),1-18.
MLA Song, Weijing,et al."G-IK-SVD: parallel IK-SVD on GPUs for sparse representation of spatial big data".0.0(2016):1-18.

入库方式: OAI收割

来源:遥感与数字地球研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。