The implications of the H-2 variability in Titan's exosphere
文献类型:期刊论文
作者 | Cui, J.1,4,5![]() |
刊名 | JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
![]() |
出版日期 | 2011-11-19 |
卷号 | 116 |
英文摘要 | We present in this paper an investigation of the distribution of H-2 in Titan's exosphere, based on the measurements made with the Ion Neutral Mass Spectrometer (INMS) onboard Cassini during 32 encounters with the satellite. The observed H-2 density in Titan's exosphere shows significant variance from flyby to flyby. However, no appreciable trend with geophysical or solar conditions can be identified. A data-model comparison is made in the framework of the Chamberlain approach, taking into account two ideal cases. First, we assume that the observed variability is spatial. In this case, the damping of exobase perturbations when propagating into the exosphere is a diagnostic of the spatial scale of the perturbations. We find that for all reasonable choices of this spatial scale, the model predicts significantly more damping than implied by the INMS data. Second, we assume that at any given time, the physical conditions in Titan's upper atmosphere and exosphere are globally uniform, but these conditions evolve with time, indicating that the observed variability is temporal. In such a case, the observations can be interpreted as a result of exobase perturbations on timescales in the range of similar to 10(3)-10(6) s. The time-varying H2 exosphere of Titan essentially reflects the varying structure and energy deposition in the upper atmosphere of the satellite, which are ultimately determined by the variations in either the solar EUV/UV radiation or the level of magnetospheric particle precipitation. However, we do not expect the considerable variability observed for Titan's H-2 exosphere to be induced by the varying solar inputs into Titan's atmosphere. Instead, we postulate that such a variability is more likely to be associated with Titan's varying plasma environment. Comparisons between different categories of Titan flybys tentatively reveal that the H2 exosphere tends to be more energetic and more expanded, and H-2 molecules tend to escape more rapidly, with increasing levels of electron precipitation from the ambient plasma environment. |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000297260100002 |
源URL | [http://ir.bao.ac.cn/handle/114a11/7870] ![]() |
专题 | 国家天文台_月球与深空探测研究部 |
作者单位 | 1.Nanjing Univ, Minist Educ, Dept Astron, Nanjing 210093, Peoples R China 2.Univ London Imperial Coll Sci Technol & Med, Dept Phys, Space & Atmospher Phys Grp, London SW7 2BW, England 3.Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA 4.Nanjing Univ, Minist Educ, Key Lab Modern Astron & Astrophys, Nanjing 210093, Peoples R China 5.Chinese Acad Sci, Natl Astron Observ, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Cui, J.,Yelle, R. V.,Mueller-Wodarg, I. C. F.,et al. The implications of the H-2 variability in Titan's exosphere[J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS,2011,116. |
APA | Cui, J.,Yelle, R. V.,Mueller-Wodarg, I. C. F.,Lavvas, P. P.,&Galand, M..(2011).The implications of the H-2 variability in Titan's exosphere.JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS,116. |
MLA | Cui, J.,et al."The implications of the H-2 variability in Titan's exosphere".JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS 116(2011). |
入库方式: OAI收割
来源:国家天文台
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。