An integrated aurora image retrieval system: AuroraEye
文献类型:期刊论文
作者 | Fu, Rong2; Gao, Xinbo2; Li, Xuelong3; Tao, Dacheng1; Jian, Yongjun2; Li, Jie2; Hu, Hongqiao4; Yang, Huigen4 |
刊名 | journal of visual communication and image representation
![]() |
出版日期 | 2010-11-01 |
卷号 | 21期号:8页码:787-797 |
关键词 | Content-based image retrieval Aurora Adaptive LBP Gabor Image texture analysis Database Feature extraction Local binary pattern |
ISSN号 | 1047-3203 |
通讯作者 | d. tao |
合作状况 | 其它 |
英文摘要 | with the digital all-sky imager (asi) emergence in aurora research, millions of images are captured annually. however, only a fraction of which can be actually used. to address the problem incurred by low efficient manual processing, an integrated image analysis and retrieval system is developed. for precisely representing aurora image, macroscopic and microscopic features are combined to describe aurora texture. to reduce the feature dimensionality of the huge dataset, a modified local binary pattern (lbp) called albp is proposed to depict the microscopic texture, and scale-invariant gabor and orientation-invariant gabor are employed to extract the macroscopic texture. a physical property of aurora is inducted as region features to bridge the gap between the low-level visual features and high-level semantic description. the experiments results demonstrate that the albp method achieves high classification rate and low computational complexity. the retrieval simulation results show that the developed retrieval system is efficient for huge dataset. (c) 2010 elsevier inc. all rights reserved. |
WOS标题词 | science & technology ; technology |
学科主题 | 信号与模式识别 ; 计算机应用其他学科(含图像处理) |
类目[WOS] | computer science, information systems ; computer science, software engineering |
研究领域[WOS] | computer science |
关键词[WOS] | support vector machines ; relevance feedback ; selection ; subspace ; tensor |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS记录号 | WOS:000283827500003 |
公开日期 | 2011-01-11 |
源URL | [http://ir.opt.ac.cn/handle/181661/8562] ![]() |
专题 | 西安光学精密机械研究所_光学影像学习与分析中心 |
作者单位 | 1.Nanyang Technol Univ, Sch Comp Engn, Singapore 639798, Singapore 2.Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China 3.Chinese Acad Sci, Ctr OPT IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian Inst Opt & Precis Mech, Xian 710779, Peoples R China 4.Polar Res Inst China, SOA Key Lab Polar Sci, Shanghai 200136, Peoples R China |
推荐引用方式 GB/T 7714 | Fu, Rong,Gao, Xinbo,Li, Xuelong,et al. An integrated aurora image retrieval system: AuroraEye[J]. journal of visual communication and image representation,2010,21(8):787-797. |
APA | Fu, Rong.,Gao, Xinbo.,Li, Xuelong.,Tao, Dacheng.,Jian, Yongjun.,...&Yang, Huigen.(2010).An integrated aurora image retrieval system: AuroraEye.journal of visual communication and image representation,21(8),787-797. |
MLA | Fu, Rong,et al."An integrated aurora image retrieval system: AuroraEye".journal of visual communication and image representation 21.8(2010):787-797. |
入库方式: OAI收割
来源:西安光学精密机械研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。