高速信号处理平台数据传输及处理系统关键技术研究
文献类型:学位论文
作者 | 徐克航 |
学位类别 | 博士 |
答辩日期 | 2008-05-27 |
授予单位 | 中国科学院声学研究所 |
授予地点 | 声学研究所 |
关键词 | 信号处理平台 模块化设计 数据传输 并行处理系统 数字信号处理 |
其他题名 | Study of Key Technology for Data Transmission and Processing Systems in High Speed Signal Processing Platform |
学位专业 | 信号与信息处理 |
中文摘要 | 在海洋科学研究和海洋工程中,声纳系统作为一类最重要的海洋水声设备,广泛应用在军事和民用领域。声纳高速信号处理平台作为声纳系统的核心部件,担负着对水声数据的采集传输以及处理等任务。随着电子技术的发展以及网络中心战等新概念的提出,现代声纳信号处理平台已越来越多的融入到舰上综合指挥系统中,在水声数据的综合信息处理和数据融合中发挥着重要作用。高速信号处理平台向大系统集成融合的趋势,对平台的模块化、标准化以及通用化提出了更高的要求。然而,一方面水声系统特殊的应用环境使得相关的标准化工作大大滞后于系统研发,另一方面组成高速信号处理平台的数据采集、数据传输以及数据处理各个分系统在接口标准和生存周期上存在较大差异,这导致声纳信号处理平台的集成和升级需要着重考虑不同系统间的兼容性,造成了极大的系统开销和资源浪费。因此,在现阶段声纳高速信号处理平台的集成和研发中,如何在保证系统性能的前提下,尽可能提高平台的模块化和兼容性,具有非常重要的现实意义。 本文就是在这样的背景下,结合水声信道匹配基础研究课题的需要,通过在关键节点采用模块化的多接口设计方案,架构并实现了一套性能优越、工作稳定且具有较好兼容性的高速信号处理平台。该平台集成了三套采用不同传输接口的数据采集设备,包括基于FPDP接口的VME总线数据采集系统、基于HOTLink协议的多基元水下小型数据采集系统,以及基于COTS技术的类PC架构数据采集系统,这三套结构性能各异的数据采集设备通过模块化的多功能数据传输系统,与高性能并行信号处理系统成功融合在统一的平台之下。 本文首先从系统的角度论述了高速信号处理平台设计的总体方案和分系统架构,并分析了系统测试以及工程实现的关键技术。然后在调研当前通用总线技术的基础上,详细论述了模块化多功能数据传输系统的设计,重点研究了FPDP总线协议、嵌入式USB2.0接口以及HOTLink接口的实现,在给出模块化多接口数据传输系统软硬件实现方法的同时,对各接口的性能进行了相关测试。在此之后,本文详细研究了用于数字信号处理系统的并行处理技术,设计了具有扩展能力的高性能并行信号处理系统,并提出了以DSP器件为主处理单元,以FPGA器件为协处理单元的信号处理模块结构。接着,重点介绍了以高速信号处理平台为核心架构的信号处理演示样机,给出了平台在水声信道匹配研究相关实验中的实际应用情况,并详细介绍了结合课题需求在商用系统上开发的多功能数据采集虚拟仪器系统。最后,出于探讨基于FPGA的数字信号处理技术在大规模并行性算法实现中的应用目的,我们研究了数字信号处理的FPGA实现,并在本文设计的平台上实现了基于DA算法的64阶FIR滤波器和采用基2算法的1024点FFT。 高速信号处理平台的集成和研发对于实现声纳系统的模块化、标准化和通用化具有重要意义,本文通过对平台数据传输和处理系统关键技术的研究实现,探索了提高信号处理平台性能和兼容性的方法。文中所设计的高速信号处理平台,不仅能满足课题需要,也为今后进一步的升级和扩展打下了良好的基础。 |
英文摘要 | In oceanic scientific research and engineering application, sonar system is one kind of the most important oceanic acoustic equipments, which is widely used in military and civil area. As the core of sonar system, high speed signal processing platform is responsible for underwater acoustic data acquisition, transmission and processing. With the development of electronic technology and the new concept of network centric war, more and more modern sonar signal processing platforms have been incorporated in navy C4 systems, and therefore plays an important role in information processing and data fusion of undersea acoustic data. High speed signal processing platform now trends toward a more comprehensive system, which brings higher requirements of platform’s modularization, standardization and generality. However, the special application condition of acoustic system makes related standardization work drop behind system R&D; even more, because of various life cycles and interface specifications of those subsystems, such as data acquisition, data transmission and data processing devices, we have to pay more attention to compatibility of different devices in system integration and upgrade, which results unnecessary system cost and resource waste. So, in recent high speed signal processing platform integration and design, it has great practical significance to improve its modularization and compatibility while remaining the system performance. Under this background, this paper is designed to meet the need of basic undersea acoustic channel matching research; by utilizing modular multi-interfaces on key node, it has built and realized a high speed signal processing platform with high performance, stability and compatibility. This platform integrates three data acquisition devices with different transmission interfaces, which are VME bus data acquisition system based on FPDP interface, underwater multi-sensor data acquisition system based on HOTLink interface, and PC structural data acquisition system based on COTS technology. These three devices of different structures and functions are incorporated with high performance parallel signal processing system into one platform, by multi-function modular data transmission system. From systematic view, the paper firstly presents the general design and subsystem structure of high speed signal processing platform, and analyzes essential technologies of system certification and engineering achievements. Secondly, based on study on current general data bus technology, this paper discusses the design of modular multi-interfaces data transmission system, researches FPDP protocol, embedded USB2.0 interface and HOTLink interface in detail, gives out hardware and software design methods of modular multi-interface data transmission system, and tests the performances of each interfaces. Thirdly, it studies parallel processing technology used in digital signal processing, designs expandable high performance parallel signal processing system, builds a signal processing module structure which uses the DSP chip as the main processing unit and FPFA as co-processing unit. Fourthly, it presents a signal processing demo prototype, taking the high speed signal processing platform as its core part, gives out practical situations of its application in undersea acoustic channel matching research, and details the development of multi-function virtual data acquisition instrument on commercial system platforms under the need of undersea acoustic channel matching research. Finally, with the purpose of applying digital signal processing technology base on FPGA to large scale parallel algorithm realization, this paper develops the 64 tap FIR filter based on DA algorithm and radix-2 1024-point FFT on the designed platform. The integration and R&D of high speed signal processing platform are vital to sonar system’s modularization, standardization and generality. The paper researches and realizes key technologies of data transmission and processing system of high speed signal processing platform, and explores methods of improving the performance and compatibility of signal processing platform. Therefore, the high speed signal processing platform designed in this paper not only meets the need of basic undersea acoustic channel matching research, but also lays a good foundation for future upgrade and development. |
语种 | 中文 |
公开日期 | 2011-05-07 |
页码 | 153 |
源URL | [http://159.226.59.140/handle/311008/312] ![]() |
专题 | 声学研究所_声学所博硕士学位论文_1981-2009博硕士学位论文 |
推荐引用方式 GB/T 7714 | 徐克航. 高速信号处理平台数据传输及处理系统关键技术研究[D]. 声学研究所. 中国科学院声学研究所. 2008. |
入库方式: OAI收割
来源:声学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。